Estimating normal density and normal distribution function: is Kolmogorov's estimator admissible?
Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 103-115.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The statistical estimation problem of the normal distribution function and of the density at a point is considered. The traditional unbiased estimators are shown to have Bayes nature and admissibility of related generalized Bayes procedures is proved. Also inadmissibility of the unbiased density estimator is demonstrated.
DOI : 10.4064/am-22-1-103-115
Keywords: point estimation, normal density, Bayes estimator, quadratic loss, admissibility, normal distribution function

Andrew Rukhin 1

1
@article{10_4064_am_22_1_103_115,
     author = {Andrew Rukhin},
     title = {Estimating normal density and normal distribution function: is {Kolmogorov's} estimator admissible?},
     journal = {Applicationes Mathematicae},
     pages = {103--115},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1993},
     doi = {10.4064/am-22-1-103-115},
     zbl = {0795.62004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-103-115/}
}
TY  - JOUR
AU  - Andrew Rukhin
TI  - Estimating normal density and normal distribution function: is Kolmogorov's estimator admissible?
JO  - Applicationes Mathematicae
PY  - 1993
SP  - 103
EP  - 115
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-103-115/
DO  - 10.4064/am-22-1-103-115
LA  - en
ID  - 10_4064_am_22_1_103_115
ER  - 
%0 Journal Article
%A Andrew Rukhin
%T Estimating normal density and normal distribution function: is Kolmogorov's estimator admissible?
%J Applicationes Mathematicae
%D 1993
%P 103-115
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-103-115/
%R 10.4064/am-22-1-103-115
%G en
%F 10_4064_am_22_1_103_115
Andrew Rukhin. Estimating normal density and normal distribution function: is Kolmogorov's estimator admissible?. Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 103-115. doi : 10.4064/am-22-1-103-115. http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-103-115/

Cité par Sources :