Modified Gram-Schmidt for solving linear least squares problems is equivalent to Gaussian elimination for the normal equations
Applicationes Mathematicae, Tome 20 (1988) no. 4, pp. 587-589
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_am_20_4_587_589,
author = {H. Sp\"ath},
title = {Modified {Gram-Schmidt} for solving linear least squares problems is equivalent to {Gaussian} elimination for the normal equations},
journal = {Applicationes Mathematicae},
pages = {587--589},
year = {1988},
volume = {20},
number = {4},
doi = {10.4064/am-20-4-587-589},
zbl = {0763.65029},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-20-4-587-589/}
}
TY - JOUR AU - H. Späth TI - Modified Gram-Schmidt for solving linear least squares problems is equivalent to Gaussian elimination for the normal equations JO - Applicationes Mathematicae PY - 1988 SP - 587 EP - 589 VL - 20 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/am-20-4-587-589/ DO - 10.4064/am-20-4-587-589 LA - en ID - 10_4064_am_20_4_587_589 ER -
%0 Journal Article %A H. Späth %T Modified Gram-Schmidt for solving linear least squares problems is equivalent to Gaussian elimination for the normal equations %J Applicationes Mathematicae %D 1988 %P 587-589 %V 20 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4064/am-20-4-587-589/ %R 10.4064/am-20-4-587-589 %G en %F 10_4064_am_20_4_587_589
H. Späth. Modified Gram-Schmidt for solving linear least squares problems is equivalent to Gaussian elimination for the normal equations. Applicationes Mathematicae, Tome 20 (1988) no. 4, pp. 587-589. doi: 10.4064/am-20-4-587-589
Cité par Sources :