Representation of integers as sums of fractional powers of primes and powers of 2
Acta Arithmetica, Tome 181 (2017) no. 2, pp. 185-196
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $c$ be a real number with $1 \lt c \lt 2$.
We consider the representation of integers in the form
$$N=[p_1^c]+[p_2^c]+2^{\nu_1}+\cdots+2^{\nu_k},$$
where $p$ and $\nu$ denote a prime number and a positive integer respectively.
We prove that when $1 \lt c \lt 29/28$, there exists an integer $k$ depending on $c$ such that
each large integer $N$ can be represented in the form above.
Keywords:
real number consider representation integers form cdots where denote prime number positive integer respectively prove there exists integer depending each large integer represented form above
Affiliations des auteurs :
Wenbin Zhu 1
@article{10_4064_aa8663_5_2017,
author = {Wenbin Zhu},
title = {Representation of integers as sums of fractional powers of primes and powers of 2},
journal = {Acta Arithmetica},
pages = {185--196},
publisher = {mathdoc},
volume = {181},
number = {2},
year = {2017},
doi = {10.4064/aa8663-5-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8663-5-2017/}
}
TY - JOUR AU - Wenbin Zhu TI - Representation of integers as sums of fractional powers of primes and powers of 2 JO - Acta Arithmetica PY - 2017 SP - 185 EP - 196 VL - 181 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8663-5-2017/ DO - 10.4064/aa8663-5-2017 LA - en ID - 10_4064_aa8663_5_2017 ER -
Wenbin Zhu. Representation of integers as sums of fractional powers of primes and powers of 2. Acta Arithmetica, Tome 181 (2017) no. 2, pp. 185-196. doi: 10.4064/aa8663-5-2017
Cité par Sources :