On the Hausdorff dimension faithfulness of Oppenheim expansion
Acta Arithmetica, Tome 180 (2017) no. 1, pp. 89-99
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the family of cylinders generated by Oppenheim expansion is not faithful for Hausdorff dimension calculation on the unit interval. On the other hand, we prove that the family of all finite unions of consecutive cylinders of the same rank is faithful. Some special cases such as Lüroth expansion, Engel expansion and Sylvester expansion are included.
Keywords:
family cylinders generated oppenheim expansion faithful hausdorff dimension calculation unit interval other prove family finite unions consecutive cylinders rank faithful special cases roth expansion engel expansion sylvester expansion included
Affiliations des auteurs :
Yu Sun 1 ; Zhengliang Zhang 2 ; Jia Liu 3
@article{10_4064_aa8648_2_2017,
author = {Yu Sun and Zhengliang Zhang and Jia Liu},
title = {On the {Hausdorff} dimension faithfulness of {Oppenheim} expansion},
journal = {Acta Arithmetica},
pages = {89--99},
publisher = {mathdoc},
volume = {180},
number = {1},
year = {2017},
doi = {10.4064/aa8648-2-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8648-2-2017/}
}
TY - JOUR AU - Yu Sun AU - Zhengliang Zhang AU - Jia Liu TI - On the Hausdorff dimension faithfulness of Oppenheim expansion JO - Acta Arithmetica PY - 2017 SP - 89 EP - 99 VL - 180 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8648-2-2017/ DO - 10.4064/aa8648-2-2017 LA - en ID - 10_4064_aa8648_2_2017 ER -
%0 Journal Article %A Yu Sun %A Zhengliang Zhang %A Jia Liu %T On the Hausdorff dimension faithfulness of Oppenheim expansion %J Acta Arithmetica %D 2017 %P 89-99 %V 180 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8648-2-2017/ %R 10.4064/aa8648-2-2017 %G en %F 10_4064_aa8648_2_2017
Yu Sun; Zhengliang Zhang; Jia Liu. On the Hausdorff dimension faithfulness of Oppenheim expansion. Acta Arithmetica, Tome 180 (2017) no. 1, pp. 89-99. doi: 10.4064/aa8648-2-2017
Cité par Sources :