Squares in Piatetski-Shapiro sequences
Acta Arithmetica, Tome 181 (2017) no. 3, pp. 239-252
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study
the distribution of squares in a Piatetski-Shapiro sequence
$(\lfloor n^c\rfloor)_{n\in\mathbb N}$ with $c \gt 1$ and $c\not\in\mathbb N$. We also study more general
equations $\lfloor n^c\rfloor = sm^2$, $n,m\in \mathbb N$, $1\le n \le N$, for an integer $s$ and
obtain several bounds on the number of solutions for a fixed $s$ and on average
over $s$ in an interval. These results are based on various techniques chosen depending
on the range of the parameters.
Keywords:
study distribution squares piatetski shapiro sequence lfloor rfloor mathbb mathbb study general equations lfloor rfloor mathbb integer obtain several bounds number solutions fixed average interval these results based various techniques chosen depending range parameters
Affiliations des auteurs :
Kui Liu 1 ; Igor E. Shparlinski 2 ; Tianping Zhang 3
@article{10_4064_aa8644_8_2017,
author = {Kui Liu and Igor E. Shparlinski and Tianping Zhang},
title = {Squares in {Piatetski-Shapiro} sequences},
journal = {Acta Arithmetica},
pages = {239--252},
publisher = {mathdoc},
volume = {181},
number = {3},
year = {2017},
doi = {10.4064/aa8644-8-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8644-8-2017/}
}
TY - JOUR AU - Kui Liu AU - Igor E. Shparlinski AU - Tianping Zhang TI - Squares in Piatetski-Shapiro sequences JO - Acta Arithmetica PY - 2017 SP - 239 EP - 252 VL - 181 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8644-8-2017/ DO - 10.4064/aa8644-8-2017 LA - en ID - 10_4064_aa8644_8_2017 ER -
Kui Liu; Igor E. Shparlinski; Tianping Zhang. Squares in Piatetski-Shapiro sequences. Acta Arithmetica, Tome 181 (2017) no. 3, pp. 239-252. doi: 10.4064/aa8644-8-2017
Cité par Sources :