Low-lying zeros for $L$-functions associated to Hilbert modular forms of large level
Acta Arithmetica, Tome 180 (2017) no. 3, pp. 251-266
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We determine the 1-level density of families of Hilbert modular forms, and show the answer agrees only with orthogonal random matrix ensembles.
Keywords:
determine level density families hilbert modular forms answer agrees only orthogonal random matrix ensembles
Affiliations des auteurs :
Sheng-Chi Liu 1 ; Steven J. Miller 2
@article{10_4064_aa8639_6_2017,
author = {Sheng-Chi Liu and Steven J. Miller},
title = {Low-lying zeros for $L$-functions associated to {Hilbert} modular forms of large level},
journal = {Acta Arithmetica},
pages = {251--266},
publisher = {mathdoc},
volume = {180},
number = {3},
year = {2017},
doi = {10.4064/aa8639-6-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8639-6-2017/}
}
TY - JOUR AU - Sheng-Chi Liu AU - Steven J. Miller TI - Low-lying zeros for $L$-functions associated to Hilbert modular forms of large level JO - Acta Arithmetica PY - 2017 SP - 251 EP - 266 VL - 180 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8639-6-2017/ DO - 10.4064/aa8639-6-2017 LA - en ID - 10_4064_aa8639_6_2017 ER -
%0 Journal Article %A Sheng-Chi Liu %A Steven J. Miller %T Low-lying zeros for $L$-functions associated to Hilbert modular forms of large level %J Acta Arithmetica %D 2017 %P 251-266 %V 180 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8639-6-2017/ %R 10.4064/aa8639-6-2017 %G en %F 10_4064_aa8639_6_2017
Sheng-Chi Liu; Steven J. Miller. Low-lying zeros for $L$-functions associated to Hilbert modular forms of large level. Acta Arithmetica, Tome 180 (2017) no. 3, pp. 251-266. doi: 10.4064/aa8639-6-2017
Cité par Sources :