Low-lying zeros for $L$-functions associated to Hilbert modular forms of large level
Acta Arithmetica, Tome 180 (2017) no. 3, pp. 251-266.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We determine the 1-level density of families of Hilbert modular forms, and show the answer agrees only with orthogonal random matrix ensembles.
DOI : 10.4064/aa8639-6-2017
Keywords: determine level density families hilbert modular forms answer agrees only orthogonal random matrix ensembles

Sheng-Chi Liu 1 ; Steven J. Miller 2

1 Department of Mathematics and Statistics Washington State University Pullman, WA 99164, U.S.A.
2 Department of Mathematics and Statistics Williams College Williamstown, MA 01267, U.S.A.
@article{10_4064_aa8639_6_2017,
     author = {Sheng-Chi Liu and Steven J. Miller},
     title = {Low-lying zeros for $L$-functions associated to {Hilbert} modular forms of large level},
     journal = {Acta Arithmetica},
     pages = {251--266},
     publisher = {mathdoc},
     volume = {180},
     number = {3},
     year = {2017},
     doi = {10.4064/aa8639-6-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8639-6-2017/}
}
TY  - JOUR
AU  - Sheng-Chi Liu
AU  - Steven J. Miller
TI  - Low-lying zeros for $L$-functions associated to Hilbert modular forms of large level
JO  - Acta Arithmetica
PY  - 2017
SP  - 251
EP  - 266
VL  - 180
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8639-6-2017/
DO  - 10.4064/aa8639-6-2017
LA  - en
ID  - 10_4064_aa8639_6_2017
ER  - 
%0 Journal Article
%A Sheng-Chi Liu
%A Steven J. Miller
%T Low-lying zeros for $L$-functions associated to Hilbert modular forms of large level
%J Acta Arithmetica
%D 2017
%P 251-266
%V 180
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8639-6-2017/
%R 10.4064/aa8639-6-2017
%G en
%F 10_4064_aa8639_6_2017
Sheng-Chi Liu; Steven J. Miller. Low-lying zeros for $L$-functions associated to Hilbert modular forms of large level. Acta Arithmetica, Tome 180 (2017) no. 3, pp. 251-266. doi : 10.4064/aa8639-6-2017. http://geodesic.mathdoc.fr/articles/10.4064/aa8639-6-2017/

Cité par Sources :