On the Bombieri–Pila method over function fields
Acta Arithmetica, Tome 181 (2017) no. 4, pp. 321-331
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
E. Bombieri and J. Pila introduced a method for bounding the number of integral lattice points that belong to a given arc under several assumptions. We generalize the Bombieri–Pila method to the case of function fields of genus 0 in one variable. We then apply the result to counting the number of elliptic curves contained in an isomorphism class and with coefficients in a box.
Keywords:
bombieri pila introduced method bounding number integral lattice points belong given arc under several assumptions generalize bombieri pila method function fields genus variable apply result counting number elliptic curves contained isomorphism class coefficients box
Affiliations des auteurs :
Alisa Sedunova 1
@article{10_4064_aa8613_8_2017,
author = {Alisa Sedunova},
title = {On the {Bombieri{\textendash}Pila} method over function fields},
journal = {Acta Arithmetica},
pages = {321--331},
publisher = {mathdoc},
volume = {181},
number = {4},
year = {2017},
doi = {10.4064/aa8613-8-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8613-8-2017/}
}
Alisa Sedunova. On the Bombieri–Pila method over function fields. Acta Arithmetica, Tome 181 (2017) no. 4, pp. 321-331. doi: 10.4064/aa8613-8-2017
Cité par Sources :