Reciprocity theorems for Bettin–Conrey sums
Acta Arithmetica, Tome 181 (2017) no. 4, pp. 297-319
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Recent work of Bettin and Conrey on the period functions of Eisenstein series
naturally gave rise to the Dedekind-like sum
\[
c_{a}\biggl(\frac{h}{k}\bigg) = k^{a}\sum_{m=1}^{k-1}\cot\biggl(\frac{\pi mh}{k}\bigg)\zeta\biggl(-a,\frac{m}{k}\bigg),
\]
where $a \in \mathbb C$, $h$ and $k$ are positive coprime integers, and $\zeta(a,x)$ denotes the Hurwitz zeta function.
We derive a new reciprocity theorem for these Bettin–Conrey sums , which in the case of an odd negative integer $a$ can be explicitly given in terms of Bernoulli
numbers. This in turn implies explicit formulas for the period functions appearing in Bettin–Conrey’s work.
We study generalizations of Bettin–Conrey sums involving zeta derivatives and multiple cotangent factors and relate these to special values of the Estermann zeta function.
Keywords:
recent work bettin conrey period functions eisenstein series naturally gave rise dedekind like sum biggl frac bigg sum k cot biggl frac bigg zeta biggl a frac bigg where mathbb positive coprime integers zeta denotes hurwitz zeta function derive reciprocity theorem these bettin conrey sums which odd negative integer explicitly given terms bernoulli numbers turn implies explicit formulas period functions appearing bettin conrey work study generalizations bettin conrey sums involving zeta derivatives multiple cotangent factors relate these special values estermann zeta function
Affiliations des auteurs :
Juan S. Auli 1 ; Abdelmejid Bayad 2 ; Matthias Beck 3
@article{10_4064_aa8580_8_2017,
author = {Juan S. Auli and Abdelmejid Bayad and Matthias Beck},
title = {Reciprocity theorems for {Bettin{\textendash}Conrey} sums},
journal = {Acta Arithmetica},
pages = {297--319},
publisher = {mathdoc},
volume = {181},
number = {4},
year = {2017},
doi = {10.4064/aa8580-8-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8580-8-2017/}
}
TY - JOUR AU - Juan S. Auli AU - Abdelmejid Bayad AU - Matthias Beck TI - Reciprocity theorems for Bettin–Conrey sums JO - Acta Arithmetica PY - 2017 SP - 297 EP - 319 VL - 181 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8580-8-2017/ DO - 10.4064/aa8580-8-2017 LA - en ID - 10_4064_aa8580_8_2017 ER -
Juan S. Auli; Abdelmejid Bayad; Matthias Beck. Reciprocity theorems for Bettin–Conrey sums. Acta Arithmetica, Tome 181 (2017) no. 4, pp. 297-319. doi: 10.4064/aa8580-8-2017
Cité par Sources :