The equivariant local $\varepsilon $-constant conjecture for unramified twists of $\mathbb Z_p(1)$
Acta Arithmetica, Tome 178 (2017) no. 4, pp. 313-383.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $N/K$ be a finite Galois extension of $p$-adic number fields. We study the equivariant local $\varepsilon$-constant conjecture, denoted by $C^{\rm na}_{\rm EP}(N/K,V)$, as formulated in various forms by Kato–Benois–Berger, Fukaya–Kato and others, for certain $1$-dimensional twists $T = \mathbb{Z}_p(\chi^{\rm nr})(1)$ of $\mathbb{Z}(1)$ and $V=T\otimes_{\mathbb Z} \mathbb{Q}_p$. Following the ideas of recent work of Izychev and Venjakob we prove that for $T = \mathbb Z_p(1)$ a conjecture of Breuning is equivalent to $C^{\rm na}_{\rm EP}(N/K,V)$. As our main result we show the validity of $C^{\rm na}_{\rm EP}(N/K,V)$ for certain wildly and weakly ramified abelian extensions $N/K$. A crucial step in the proof is the construction of an explicit representative of $R\varGamma(N, T)$.
DOI : 10.4064/aa8567-10-2016
Keywords: finite galois extension p adic number fields study equivariant local varepsilon constant conjecture denoted formulated various forms kato benois berger fukaya kato others certain dimensional twists mathbb chi mathbb otimes mathbb mathbb following ideas recent work izychev venjakob prove mathbb conjecture breuning equivalent main result validity certain wildly weakly ramified abelian extensions crucial step proof construction explicit representative vargamma

Werner Bley 1 ; Alessandro Cobbe 2

1 Mathematisches Institut der Universität München Theresienstr. 39 D-80333 München, Germany
2 Institut für Theoretische Informatik, Mathematik und Operations Research Fakultät für Informatik Universität der Bundeswehr München Werner-Heisenberg-Weg 39 D-85577 Neubiberg, Germany
@article{10_4064_aa8567_10_2016,
     author = {Werner Bley and Alessandro Cobbe},
     title = {The equivariant local $\varepsilon $-constant conjecture for unramified twists of $\mathbb Z_p(1)$},
     journal = {Acta Arithmetica},
     pages = {313--383},
     publisher = {mathdoc},
     volume = {178},
     number = {4},
     year = {2017},
     doi = {10.4064/aa8567-10-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8567-10-2016/}
}
TY  - JOUR
AU  - Werner Bley
AU  - Alessandro Cobbe
TI  - The equivariant local $\varepsilon $-constant conjecture for unramified twists of $\mathbb Z_p(1)$
JO  - Acta Arithmetica
PY  - 2017
SP  - 313
EP  - 383
VL  - 178
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8567-10-2016/
DO  - 10.4064/aa8567-10-2016
LA  - en
ID  - 10_4064_aa8567_10_2016
ER  - 
%0 Journal Article
%A Werner Bley
%A Alessandro Cobbe
%T The equivariant local $\varepsilon $-constant conjecture for unramified twists of $\mathbb Z_p(1)$
%J Acta Arithmetica
%D 2017
%P 313-383
%V 178
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8567-10-2016/
%R 10.4064/aa8567-10-2016
%G en
%F 10_4064_aa8567_10_2016
Werner Bley; Alessandro Cobbe. The equivariant local $\varepsilon $-constant conjecture for unramified twists of $\mathbb Z_p(1)$. Acta Arithmetica, Tome 178 (2017) no. 4, pp. 313-383. doi : 10.4064/aa8567-10-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8567-10-2016/

Cité par Sources :