The equivariant local $\varepsilon $-constant conjecture for unramified twists of $\mathbb Z_p(1)$
Acta Arithmetica, Tome 178 (2017) no. 4, pp. 313-383
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $N/K$ be a finite Galois extension of $p$-adic number fields.
We study the equivariant local $\varepsilon$-constant conjecture, denoted by $C^{\rm na}_{\rm EP}(N/K,V)$, as formulated in various forms by
Kato–Benois–Berger, Fukaya–Kato and others, for certain $1$-dimensional twists $T = \mathbb{Z}_p(\chi^{\rm nr})(1)$ of $\mathbb{Z}(1)$ and $V=T\otimes_{\mathbb Z} \mathbb{Q}_p$.
Following the ideas of recent work of Izychev and Venjakob we prove that for $T = \mathbb Z_p(1)$ a conjecture of Breuning
is equivalent to $C^{\rm na}_{\rm EP}(N/K,V)$. As our main result we show the validity of $C^{\rm na}_{\rm EP}(N/K,V)$ for certain wildly and weakly ramified
abelian extensions $N/K$. A crucial step in the proof is the construction of an explicit representative of
$R\varGamma(N, T)$.
Keywords:
finite galois extension p adic number fields study equivariant local varepsilon constant conjecture denoted formulated various forms kato benois berger fukaya kato others certain dimensional twists mathbb chi mathbb otimes mathbb mathbb following ideas recent work izychev venjakob prove mathbb conjecture breuning equivalent main result validity certain wildly weakly ramified abelian extensions crucial step proof construction explicit representative vargamma
Affiliations des auteurs :
Werner Bley 1 ; Alessandro Cobbe 2
@article{10_4064_aa8567_10_2016,
author = {Werner Bley and Alessandro Cobbe},
title = {The equivariant local $\varepsilon $-constant conjecture for unramified twists of $\mathbb Z_p(1)$},
journal = {Acta Arithmetica},
pages = {313--383},
publisher = {mathdoc},
volume = {178},
number = {4},
year = {2017},
doi = {10.4064/aa8567-10-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8567-10-2016/}
}
TY - JOUR AU - Werner Bley AU - Alessandro Cobbe TI - The equivariant local $\varepsilon $-constant conjecture for unramified twists of $\mathbb Z_p(1)$ JO - Acta Arithmetica PY - 2017 SP - 313 EP - 383 VL - 178 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8567-10-2016/ DO - 10.4064/aa8567-10-2016 LA - en ID - 10_4064_aa8567_10_2016 ER -
%0 Journal Article %A Werner Bley %A Alessandro Cobbe %T The equivariant local $\varepsilon $-constant conjecture for unramified twists of $\mathbb Z_p(1)$ %J Acta Arithmetica %D 2017 %P 313-383 %V 178 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8567-10-2016/ %R 10.4064/aa8567-10-2016 %G en %F 10_4064_aa8567_10_2016
Werner Bley; Alessandro Cobbe. The equivariant local $\varepsilon $-constant conjecture for unramified twists of $\mathbb Z_p(1)$. Acta Arithmetica, Tome 178 (2017) no. 4, pp. 313-383. doi: 10.4064/aa8567-10-2016
Cité par Sources :