Rational period functions and indefinite binary quadratic forms in higher level cases
Acta Arithmetica, Tome 179 (2017) no. 4, pp. 319-334
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Generalizing Gethner’s 1993 result we prove that rational period functions with irrational poles in higher level cases are not Hecke eigenfunctions. We also provide examples of rational period functions in level $2$ with irrational poles associated with indefinite binary quadratic forms by extending Choie and Parson’s 1990 result.
Keywords:
generalizing gethner result prove rational period functions irrational poles higher level cases hecke eigenfunctions provide examples rational period functions level irrational poles associated indefinite binary quadratic forms extending choie parson result
Affiliations des auteurs :
SoYoung Choi 1 ; Chang Heon Kim 2
@article{10_4064_aa8556_2_2017,
author = {SoYoung Choi and Chang Heon Kim},
title = {Rational period functions and indefinite binary quadratic forms in higher level cases},
journal = {Acta Arithmetica},
pages = {319--334},
publisher = {mathdoc},
volume = {179},
number = {4},
year = {2017},
doi = {10.4064/aa8556-2-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8556-2-2017/}
}
TY - JOUR AU - SoYoung Choi AU - Chang Heon Kim TI - Rational period functions and indefinite binary quadratic forms in higher level cases JO - Acta Arithmetica PY - 2017 SP - 319 EP - 334 VL - 179 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8556-2-2017/ DO - 10.4064/aa8556-2-2017 LA - en ID - 10_4064_aa8556_2_2017 ER -
%0 Journal Article %A SoYoung Choi %A Chang Heon Kim %T Rational period functions and indefinite binary quadratic forms in higher level cases %J Acta Arithmetica %D 2017 %P 319-334 %V 179 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8556-2-2017/ %R 10.4064/aa8556-2-2017 %G en %F 10_4064_aa8556_2_2017
SoYoung Choi; Chang Heon Kim. Rational period functions and indefinite binary quadratic forms in higher level cases. Acta Arithmetica, Tome 179 (2017) no. 4, pp. 319-334. doi: 10.4064/aa8556-2-2017
Cité par Sources :