Rational period functions and indefinite binary quadratic forms in higher level cases
Acta Arithmetica, Tome 179 (2017) no. 4, pp. 319-334.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Generalizing Gethner’s 1993 result we prove that rational period functions with irrational poles in higher level cases are not Hecke eigenfunctions. We also provide examples of rational period functions in level $2$ with irrational poles associated with indefinite binary quadratic forms by extending Choie and Parson’s 1990 result.
DOI : 10.4064/aa8556-2-2017
Keywords: generalizing gethner result prove rational period functions irrational poles higher level cases hecke eigenfunctions provide examples rational period functions level irrational poles associated indefinite binary quadratic forms extending choie parson result

SoYoung Choi 1 ; Chang Heon Kim 2

1 Department of Mathematics Education and RINS Gyeongsang National University 501 Jinjudae-ro, Jinju, 660-701, South Korea
2 Department of Mathematics Sungkyunkwan University Suwon, 440-746, South Korea
@article{10_4064_aa8556_2_2017,
     author = {SoYoung Choi and Chang Heon Kim},
     title = {Rational period functions and indefinite binary quadratic forms in higher level cases},
     journal = {Acta Arithmetica},
     pages = {319--334},
     publisher = {mathdoc},
     volume = {179},
     number = {4},
     year = {2017},
     doi = {10.4064/aa8556-2-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8556-2-2017/}
}
TY  - JOUR
AU  - SoYoung Choi
AU  - Chang Heon Kim
TI  - Rational period functions and indefinite binary quadratic forms in higher level cases
JO  - Acta Arithmetica
PY  - 2017
SP  - 319
EP  - 334
VL  - 179
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8556-2-2017/
DO  - 10.4064/aa8556-2-2017
LA  - en
ID  - 10_4064_aa8556_2_2017
ER  - 
%0 Journal Article
%A SoYoung Choi
%A Chang Heon Kim
%T Rational period functions and indefinite binary quadratic forms in higher level cases
%J Acta Arithmetica
%D 2017
%P 319-334
%V 179
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8556-2-2017/
%R 10.4064/aa8556-2-2017
%G en
%F 10_4064_aa8556_2_2017
SoYoung Choi; Chang Heon Kim. Rational period functions and indefinite binary quadratic forms in higher level cases. Acta Arithmetica, Tome 179 (2017) no. 4, pp. 319-334. doi : 10.4064/aa8556-2-2017. http://geodesic.mathdoc.fr/articles/10.4064/aa8556-2-2017/

Cité par Sources :