On the $X$-coordinates of Pell equations which are Tribonacci numbers
Acta Arithmetica, Tome 179 (2017) no. 1, pp. 25-35
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For an integer $d\geq 2$ which is not a square, we show that there is at most one value of the positive integer $X$ participating in the Pell equation $X^2-dY^2=\pm 1$ which is a Tribonacci number, with a few exceptions that we completely characterize.
Keywords:
integer geq which square there value positive integer participating pell equation dy which tribonacci number few exceptions completely characterize
Affiliations des auteurs :
Florian Luca 1 ; Amanda Montejano 2 ; Laszlo Szalay 3 ; Alain Togbé 4
@article{10_4064_aa8553_2_2017,
author = {Florian Luca and Amanda Montejano and Laszlo Szalay and Alain Togb\'e},
title = {On the $X$-coordinates of {Pell} equations which are {Tribonacci} numbers},
journal = {Acta Arithmetica},
pages = {25--35},
year = {2017},
volume = {179},
number = {1},
doi = {10.4064/aa8553-2-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8553-2-2017/}
}
TY - JOUR AU - Florian Luca AU - Amanda Montejano AU - Laszlo Szalay AU - Alain Togbé TI - On the $X$-coordinates of Pell equations which are Tribonacci numbers JO - Acta Arithmetica PY - 2017 SP - 25 EP - 35 VL - 179 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8553-2-2017/ DO - 10.4064/aa8553-2-2017 LA - en ID - 10_4064_aa8553_2_2017 ER -
%0 Journal Article %A Florian Luca %A Amanda Montejano %A Laszlo Szalay %A Alain Togbé %T On the $X$-coordinates of Pell equations which are Tribonacci numbers %J Acta Arithmetica %D 2017 %P 25-35 %V 179 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/aa8553-2-2017/ %R 10.4064/aa8553-2-2017 %G en %F 10_4064_aa8553_2_2017
Florian Luca; Amanda Montejano; Laszlo Szalay; Alain Togbé. On the $X$-coordinates of Pell equations which are Tribonacci numbers. Acta Arithmetica, Tome 179 (2017) no. 1, pp. 25-35. doi: 10.4064/aa8553-2-2017
Cité par Sources :