Automorphism loci for the moduli space of rational maps
Acta Arithmetica, Tome 180 (2017) no. 3, pp. 267-296
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $k$ be an algebraically closed field of characteristic $0$, and $\mathcal{M}_d$ the moduli space of rational maps on $\mathbb P^1$ of degree $d$ over $k$. This paper describes the automorphism loci $A\subset \mathrm{Rat}_d$ and $\mathcal{A}\subset \mathcal{M}_d$ and the singular locus $\mathcal{S}\subset\mathcal{M}_d$. In particular, we determine which groups occur as subgroups of the automorphism group of some $[\phi]\in\mathcal{M}_d$ for a given $d$ and calculate the dimension of the locus. Next, we prove an analogous theorem to the Rauch–Popp–Oort characterization of singular points on the moduli scheme for curves. The results concerning these distinguished loci are used to compute the Picard and class groups of $\mathcal{M}_d$, $\mathcal{M}_d^s$, and $\mathcal{M}_d^{ss}$.
Keywords:
algebraically closed field characteristic nbsp mathcal moduli space rational maps mathbb degree paper describes automorphism loci subset mathrm rat mathcal subset mathcal singular locus mathcal subset mathcal particular determine which groups occur subgroups automorphism group phi mathcal given calculate dimension locus prove analogous theorem rauch popp oort characterization singular points moduli scheme curves results concerning these distinguished loci compute picard class groups mathcal mathcal nbsp mathcal
Affiliations des auteurs :
Nikita Miasnikov 1 ; Brian Stout 2 ; Phillip Williams 3
@article{10_4064_aa8548_6_2017,
author = {Nikita Miasnikov and Brian Stout and Phillip Williams},
title = {Automorphism loci for the moduli space of rational maps},
journal = {Acta Arithmetica},
pages = {267--296},
publisher = {mathdoc},
volume = {180},
number = {3},
year = {2017},
doi = {10.4064/aa8548-6-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8548-6-2017/}
}
TY - JOUR AU - Nikita Miasnikov AU - Brian Stout AU - Phillip Williams TI - Automorphism loci for the moduli space of rational maps JO - Acta Arithmetica PY - 2017 SP - 267 EP - 296 VL - 180 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8548-6-2017/ DO - 10.4064/aa8548-6-2017 LA - en ID - 10_4064_aa8548_6_2017 ER -
%0 Journal Article %A Nikita Miasnikov %A Brian Stout %A Phillip Williams %T Automorphism loci for the moduli space of rational maps %J Acta Arithmetica %D 2017 %P 267-296 %V 180 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8548-6-2017/ %R 10.4064/aa8548-6-2017 %G en %F 10_4064_aa8548_6_2017
Nikita Miasnikov; Brian Stout; Phillip Williams. Automorphism loci for the moduli space of rational maps. Acta Arithmetica, Tome 180 (2017) no. 3, pp. 267-296. doi: 10.4064/aa8548-6-2017
Cité par Sources :