Automorphism loci for the moduli space of rational maps
Acta Arithmetica, Tome 180 (2017) no. 3, pp. 267-296.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $k$ be an algebraically closed field of characteristic $0$, and $\mathcal{M}_d$ the moduli space of rational maps on $\mathbb P^1$ of degree $d$ over $k$. This paper describes the automorphism loci $A\subset \mathrm{Rat}_d$ and $\mathcal{A}\subset \mathcal{M}_d$ and the singular locus $\mathcal{S}\subset\mathcal{M}_d$. In particular, we determine which groups occur as subgroups of the automorphism group of some $[\phi]\in\mathcal{M}_d$ for a given $d$ and calculate the dimension of the locus. Next, we prove an analogous theorem to the Rauch–Popp–Oort characterization of singular points on the moduli scheme for curves. The results concerning these distinguished loci are used to compute the Picard and class groups of $\mathcal{M}_d$, $\mathcal{M}_d^s$, and $\mathcal{M}_d^{ss}$.
DOI : 10.4064/aa8548-6-2017
Keywords: algebraically closed field characteristic nbsp mathcal moduli space rational maps mathbb degree paper describes automorphism loci subset mathrm rat mathcal subset mathcal singular locus mathcal subset mathcal particular determine which groups occur subgroups automorphism group phi mathcal given calculate dimension locus prove analogous theorem rauch popp oort characterization singular points moduli scheme curves results concerning these distinguished loci compute picard class groups mathcal mathcal nbsp mathcal

Nikita Miasnikov 1 ; Brian Stout 2 ; Phillip Williams 3

1 Department of Mathematics SUNY Oswego 7060 Route 104 Oswego, NY 13126, U.S.A.
2 Minerva Schools at KGI 1145 Market St. San Francisco, CA 94103, U.S.A.
3 Department of Mathematics The King’s College 56 Broadway New York, NY 10004, U.S.A.
@article{10_4064_aa8548_6_2017,
     author = {Nikita Miasnikov and Brian Stout and Phillip Williams},
     title = {Automorphism loci for the moduli space of rational maps},
     journal = {Acta Arithmetica},
     pages = {267--296},
     publisher = {mathdoc},
     volume = {180},
     number = {3},
     year = {2017},
     doi = {10.4064/aa8548-6-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8548-6-2017/}
}
TY  - JOUR
AU  - Nikita Miasnikov
AU  - Brian Stout
AU  - Phillip Williams
TI  - Automorphism loci for the moduli space of rational maps
JO  - Acta Arithmetica
PY  - 2017
SP  - 267
EP  - 296
VL  - 180
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8548-6-2017/
DO  - 10.4064/aa8548-6-2017
LA  - en
ID  - 10_4064_aa8548_6_2017
ER  - 
%0 Journal Article
%A Nikita Miasnikov
%A Brian Stout
%A Phillip Williams
%T Automorphism loci for the moduli space of rational maps
%J Acta Arithmetica
%D 2017
%P 267-296
%V 180
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8548-6-2017/
%R 10.4064/aa8548-6-2017
%G en
%F 10_4064_aa8548_6_2017
Nikita Miasnikov; Brian Stout; Phillip Williams. Automorphism loci for the moduli space of rational maps. Acta Arithmetica, Tome 180 (2017) no. 3, pp. 267-296. doi : 10.4064/aa8548-6-2017. http://geodesic.mathdoc.fr/articles/10.4064/aa8548-6-2017/

Cité par Sources :