On the behavior close to the unit circle of power series with additive coefficients
Acta Arithmetica, Tome 180 (2017) no. 4, pp. 319-332.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Consider the power series $\mathfrak{A}(z)= \sum_{n=1}^{\infty}\alpha(n)z^n$, where $\alpha(n)$ is an additive function satisfying the condition $\alpha(p^m)=mf(p,m)\ln p$, where $f(p,m)\to 0$ as $p\to \infty$ uniformly with respect to $m$. Denote by $e(l/q)$ the root of unity $e^{2\pi il/q}$. For such series we give effective omega-estimates for $\mathfrak{A}(e(l/p^k)r)$ as $r\to 1-$. From the estimates we deduce that if such a series has non-singular points on the unit circle then it is a rational function.
DOI : 10.4064/aa8536-4-2017
Keywords: consider power series mathfrak sum infty alpha where alpha additive function satisfying condition alpha where infty uniformly respect nbsp denote root unity series effective omega estimates mathfrak k estimates deduce series has non singular points unit circle rational function

Oleg A. Petrushov 1

1 Moscow State University Vorobyovi Gory, Russia
@article{10_4064_aa8536_4_2017,
     author = {Oleg A. Petrushov},
     title = {On the behavior close to the unit circle of power series with additive coefficients},
     journal = {Acta Arithmetica},
     pages = {319--332},
     publisher = {mathdoc},
     volume = {180},
     number = {4},
     year = {2017},
     doi = {10.4064/aa8536-4-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8536-4-2017/}
}
TY  - JOUR
AU  - Oleg A. Petrushov
TI  - On the behavior close to the unit circle of power series with additive coefficients
JO  - Acta Arithmetica
PY  - 2017
SP  - 319
EP  - 332
VL  - 180
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8536-4-2017/
DO  - 10.4064/aa8536-4-2017
LA  - en
ID  - 10_4064_aa8536_4_2017
ER  - 
%0 Journal Article
%A Oleg A. Petrushov
%T On the behavior close to the unit circle of power series with additive coefficients
%J Acta Arithmetica
%D 2017
%P 319-332
%V 180
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8536-4-2017/
%R 10.4064/aa8536-4-2017
%G en
%F 10_4064_aa8536_4_2017
Oleg A. Petrushov. On the behavior close to the unit circle of power series with additive coefficients. Acta Arithmetica, Tome 180 (2017) no. 4, pp. 319-332. doi : 10.4064/aa8536-4-2017. http://geodesic.mathdoc.fr/articles/10.4064/aa8536-4-2017/

Cité par Sources :