An example of a $\mathop {\rm PSL}\nolimits _2(\mathbb {F}_7)$-maximal unramified extension of a quartic number field
Acta Arithmetica, Tome 179 (2017) no. 2, pp. 147-162.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $K$ be a number field and $K^{f}_{\rm ur}$ be the maximal extension of $K$ which is unramified over all finite places. We find a quartic field $K$ such that $\operatorname{Gal}(K^f_{\rm ur}/K) \simeq \operatorname{PSL}_2(\mathbb F_7)$ under the assumption of the GRH.
DOI : 10.4064/aa8506-2-2017
Keywords: number field maximal extension which unramified finite places quartic field operatorname gal simeq operatorname psl mathbb under assumption grh

Kwang-Seob Kim 1

1 School of Mathematics Korea Institute for Advanced Study Seoul 130-722, Korea
@article{10_4064_aa8506_2_2017,
     author = {Kwang-Seob Kim},
     title = {An example of a $\mathop {\rm PSL}\nolimits _2(\mathbb {F}_7)$-maximal unramified extension of a quartic number field},
     journal = {Acta Arithmetica},
     pages = {147--162},
     publisher = {mathdoc},
     volume = {179},
     number = {2},
     year = {2017},
     doi = {10.4064/aa8506-2-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8506-2-2017/}
}
TY  - JOUR
AU  - Kwang-Seob Kim
TI  - An example of a $\mathop {\rm PSL}\nolimits _2(\mathbb {F}_7)$-maximal unramified extension of a quartic number field
JO  - Acta Arithmetica
PY  - 2017
SP  - 147
EP  - 162
VL  - 179
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8506-2-2017/
DO  - 10.4064/aa8506-2-2017
LA  - en
ID  - 10_4064_aa8506_2_2017
ER  - 
%0 Journal Article
%A Kwang-Seob Kim
%T An example of a $\mathop {\rm PSL}\nolimits _2(\mathbb {F}_7)$-maximal unramified extension of a quartic number field
%J Acta Arithmetica
%D 2017
%P 147-162
%V 179
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8506-2-2017/
%R 10.4064/aa8506-2-2017
%G en
%F 10_4064_aa8506_2_2017
Kwang-Seob Kim. An example of a $\mathop {\rm PSL}\nolimits _2(\mathbb {F}_7)$-maximal unramified extension of a quartic number field. Acta Arithmetica, Tome 179 (2017) no. 2, pp. 147-162. doi : 10.4064/aa8506-2-2017. http://geodesic.mathdoc.fr/articles/10.4064/aa8506-2-2017/

Cité par Sources :