Eligible integers represented by positive ternary quadratic forms
Acta Arithmetica, Tome 179 (2017) no. 1, pp. 17-23
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Assume that $f$ is a positive definite integral ternary quadratic form. Let $N_f$ denote the level of $f$. Assume that there are exactly two classes in gen$(f)$ and let $g$ be a representative of the other class. Assume further that $f$ and $g$ are in the same spinor genus. We show that if $M$ with $(M,N_f)=1$ is an eligible integer which is not square-free, then it can be represented by $f$. This generalizes Ono and Soundararajan’s 1997 result for $f=x_1^2+x_2^2+10x_3^2$, Wang and Pei’s 2001 result for $f=x_1^2+7x_2^2+7x_3^2$ and Kelley’s 2001 result for $f=x_1^2+x_2^2+7x_3^2$.
Keywords:
assume positive definite integral ternary quadratic form denote level assume there exactly classes gen representative other class assume further spinor genus eligible integer which square free represented generalizes ono soundararajan result wang pei result kelley result
Affiliations des auteurs :
Wei Lu 1 ; Hourong Qin 1
@article{10_4064_aa8498_2_2017,
author = {Wei Lu and Hourong Qin},
title = {Eligible integers represented by positive ternary quadratic forms},
journal = {Acta Arithmetica},
pages = {17--23},
year = {2017},
volume = {179},
number = {1},
doi = {10.4064/aa8498-2-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8498-2-2017/}
}
TY - JOUR AU - Wei Lu AU - Hourong Qin TI - Eligible integers represented by positive ternary quadratic forms JO - Acta Arithmetica PY - 2017 SP - 17 EP - 23 VL - 179 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8498-2-2017/ DO - 10.4064/aa8498-2-2017 LA - en ID - 10_4064_aa8498_2_2017 ER -
Wei Lu; Hourong Qin. Eligible integers represented by positive ternary quadratic forms. Acta Arithmetica, Tome 179 (2017) no. 1, pp. 17-23. doi: 10.4064/aa8498-2-2017
Cité par Sources :