On Tate–Shafarevich groups of 1-motives
Acta Arithmetica, Tome 177 (2017) no. 1, pp. 75-89
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We establish the finiteness of the kernel and cokernel of the restriction map ${\rm res}^{i}\colon Ш^{i}(F,M)\to Ш^{i}(K,M)^{\varGamma}$ for $i=1$ and $2$, where $M$ is a (Deligne) $1$-motive over a global field $F$, and $K/ F$ is a finite Galois extension of global fields with Galois group $\varGamma$.
Keywords:
establish finiteness kernel cokernel restriction map res colon sha sha vargamma where deligne motive global field nbsp finite galois extension global fields galois group nbsp vargamma
Affiliations des auteurs :
Cristian D. González-Avilés 1
@article{10_4064_aa8489_8_2016,
author = {Cristian D. Gonz\'alez-Avil\'es},
title = {On {Tate{\textendash}Shafarevich} groups of 1-motives},
journal = {Acta Arithmetica},
pages = {75--89},
publisher = {mathdoc},
volume = {177},
number = {1},
year = {2017},
doi = {10.4064/aa8489-8-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8489-8-2016/}
}
Cristian D. González-Avilés. On Tate–Shafarevich groups of 1-motives. Acta Arithmetica, Tome 177 (2017) no. 1, pp. 75-89. doi: 10.4064/aa8489-8-2016
Cité par Sources :