Some real quadratic number fields whose Hilbert 2-class fields have class number congruent to 2 modulo 4
Acta Arithmetica, Tome 177 (2017) no. 4, pp. 375-392
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We characterize all real quadratic number fields whose discriminants are a sum of two squares for which their Hilbert $2$-class fields have class number congruent to $2$ modulo $4$.
Keywords:
characterize real quadratic number fields whose discriminants sum squares which their hilbert class fields have class number congruent modulo nbsp
Affiliations des auteurs :
Elliot Benjamin 1 ; C. Snyder 2
@article{10_4064_aa8485_9_2016,
author = {Elliot Benjamin and C. Snyder},
title = {Some real quadratic number fields whose {Hilbert} 2-class fields have class number congruent to 2 modulo 4},
journal = {Acta Arithmetica},
pages = {375--392},
publisher = {mathdoc},
volume = {177},
number = {4},
year = {2017},
doi = {10.4064/aa8485-9-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8485-9-2016/}
}
TY - JOUR AU - Elliot Benjamin AU - C. Snyder TI - Some real quadratic number fields whose Hilbert 2-class fields have class number congruent to 2 modulo 4 JO - Acta Arithmetica PY - 2017 SP - 375 EP - 392 VL - 177 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8485-9-2016/ DO - 10.4064/aa8485-9-2016 LA - en ID - 10_4064_aa8485_9_2016 ER -
%0 Journal Article %A Elliot Benjamin %A C. Snyder %T Some real quadratic number fields whose Hilbert 2-class fields have class number congruent to 2 modulo 4 %J Acta Arithmetica %D 2017 %P 375-392 %V 177 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8485-9-2016/ %R 10.4064/aa8485-9-2016 %G en %F 10_4064_aa8485_9_2016
Elliot Benjamin; C. Snyder. Some real quadratic number fields whose Hilbert 2-class fields have class number congruent to 2 modulo 4. Acta Arithmetica, Tome 177 (2017) no. 4, pp. 375-392. doi: 10.4064/aa8485-9-2016
Cité par Sources :