On the sign changes in a weighted divisor problem
Acta Arithmetica, Tome 178 (2017) no. 2, pp. 135-152.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $$ S(x; {a_1}/{q_1}, {a_2}/{q_2}) =\sideset{}{^\prime}\sum_{mn\leq x} \cos(2\pi m{a_1}/{q_1})\sin(2\pi n{a_2}/{q_2}) $$ with $x\geq (q_1q_2)^{1+\varepsilon}$, $1\leq a_i\leq q_i$, and $(a_i, q_i)=1$ ($i=1, 2$). We study the sign changes of $S(x; {a_1}/{q_1}, {a_2}/{q_2})$, and prove that for a sufficiently large constant $C$, $S(x; {a_1}/{q_1}, {a_2}/{q_2})$ changes sign in the interval $[T,T+C\sqrt{T}]$ for any large $T$. Moreover, for a small constant $c’$, there exist infinitely many subintervals of length $c’\sqrt{T}\log^{-7}T$ in $[T,2T]$ where $\pm S(t; {a_1}/{q_1}, {a_2}/{q_2}) \gt c_5 (q_1q_2)^{{3}/{4}}t^{{1}/{4}}$ always holds.
DOI : 10.4064/aa8464-2-2017
Keywords: sideset prime sum leq cos sin geq varepsilon leq leq study sign changes prove sufficiently large constant nbsp changes sign interval sqrt large nbsp moreover small constant there exist infinitely many subintervals length sqrt log where always holds

Lirui Jia 1 ; Tianxin Cai 2 ; Wenguang Zhai 3

1 School of Mathematical Sciences Zhejiang University Hangzhou 310027 People’s Republic of China
2 School of Mathematical Sciences Zhejiang University Hangzhou 310027, People’s Republic of China
3 Department of Mathematics China University of Mining and Technology Beijing 100083, People’s Republic of China
@article{10_4064_aa8464_2_2017,
     author = {Lirui Jia and Tianxin Cai and Wenguang Zhai},
     title = {On the sign changes in a weighted divisor problem},
     journal = {Acta Arithmetica},
     pages = {135--152},
     publisher = {mathdoc},
     volume = {178},
     number = {2},
     year = {2017},
     doi = {10.4064/aa8464-2-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8464-2-2017/}
}
TY  - JOUR
AU  - Lirui Jia
AU  - Tianxin Cai
AU  - Wenguang Zhai
TI  - On the sign changes in a weighted divisor problem
JO  - Acta Arithmetica
PY  - 2017
SP  - 135
EP  - 152
VL  - 178
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8464-2-2017/
DO  - 10.4064/aa8464-2-2017
LA  - en
ID  - 10_4064_aa8464_2_2017
ER  - 
%0 Journal Article
%A Lirui Jia
%A Tianxin Cai
%A Wenguang Zhai
%T On the sign changes in a weighted divisor problem
%J Acta Arithmetica
%D 2017
%P 135-152
%V 178
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8464-2-2017/
%R 10.4064/aa8464-2-2017
%G en
%F 10_4064_aa8464_2_2017
Lirui Jia; Tianxin Cai; Wenguang Zhai. On the sign changes in a weighted divisor problem. Acta Arithmetica, Tome 178 (2017) no. 2, pp. 135-152. doi : 10.4064/aa8464-2-2017. http://geodesic.mathdoc.fr/articles/10.4064/aa8464-2-2017/

Cité par Sources :