On the sign changes in a weighted divisor problem
Acta Arithmetica, Tome 178 (2017) no. 2, pp. 135-152
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $$
S(x; {a_1}/{q_1}, {a_2}/{q_2})
=\sideset{}{^\prime}\sum_{mn\leq x} \cos(2\pi m{a_1}/{q_1})\sin(2\pi n{a_2}/{q_2})
$$ with $x\geq (q_1q_2)^{1+\varepsilon}$, $1\leq a_i\leq q_i$, and $(a_i, q_i)=1$ ($i=1, 2$). We study the sign changes of $S(x; {a_1}/{q_1}, {a_2}/{q_2})$, and prove that for a sufficiently large constant $C$, $S(x; {a_1}/{q_1}, {a_2}/{q_2})$ changes sign in the interval $[T,T+C\sqrt{T}]$ for any large $T$. Moreover, for a small constant $c’$, there exist infinitely many
subintervals of length $c’\sqrt{T}\log^{-7}T$ in $[T,2T]$ where $\pm S(t; {a_1}/{q_1}, {a_2}/{q_2}) \gt c_5 (q_1q_2)^{{3}/{4}}t^{{1}/{4}}$ always holds.
Keywords:
sideset prime sum leq cos sin geq varepsilon leq leq study sign changes prove sufficiently large constant nbsp changes sign interval sqrt large nbsp moreover small constant there exist infinitely many subintervals length sqrt log where always holds
Affiliations des auteurs :
Lirui Jia 1 ; Tianxin Cai 2 ; Wenguang Zhai 3
@article{10_4064_aa8464_2_2017,
author = {Lirui Jia and Tianxin Cai and Wenguang Zhai},
title = {On the sign changes in a weighted divisor problem},
journal = {Acta Arithmetica},
pages = {135--152},
year = {2017},
volume = {178},
number = {2},
doi = {10.4064/aa8464-2-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8464-2-2017/}
}
TY - JOUR AU - Lirui Jia AU - Tianxin Cai AU - Wenguang Zhai TI - On the sign changes in a weighted divisor problem JO - Acta Arithmetica PY - 2017 SP - 135 EP - 152 VL - 178 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8464-2-2017/ DO - 10.4064/aa8464-2-2017 LA - en ID - 10_4064_aa8464_2_2017 ER -
Lirui Jia; Tianxin Cai; Wenguang Zhai. On the sign changes in a weighted divisor problem. Acta Arithmetica, Tome 178 (2017) no. 2, pp. 135-152. doi: 10.4064/aa8464-2-2017
Cité par Sources :