Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Dan Romik 1
@article{10_4064_aa8455_3_2017, author = {Dan Romik}, title = {On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the {Bernoulli} numbers, and the {Witten} zeta function}, journal = {Acta Arithmetica}, pages = {111--159}, publisher = {mathdoc}, volume = {180}, number = {2}, year = {2017}, doi = {10.4064/aa8455-3-2017}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8455-3-2017/} }
TY - JOUR AU - Dan Romik TI - On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the Bernoulli numbers, and the Witten zeta function JO - Acta Arithmetica PY - 2017 SP - 111 EP - 159 VL - 180 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8455-3-2017/ DO - 10.4064/aa8455-3-2017 LA - en ID - 10_4064_aa8455_3_2017 ER -
%0 Journal Article %A Dan Romik %T On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the Bernoulli numbers, and the Witten zeta function %J Acta Arithmetica %D 2017 %P 111-159 %V 180 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8455-3-2017/ %R 10.4064/aa8455-3-2017 %G en %F 10_4064_aa8455_3_2017
Dan Romik. On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the Bernoulli numbers, and the Witten zeta function. Acta Arithmetica, Tome 180 (2017) no. 2, pp. 111-159. doi : 10.4064/aa8455-3-2017. http://geodesic.mathdoc.fr/articles/10.4064/aa8455-3-2017/
Cité par Sources :