On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the Bernoulli numbers, and the Witten zeta function
Acta Arithmetica, Tome 180 (2017) no. 2, pp. 111-159
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We derive new results about properties of the Witten zeta function associated with the group ${\rm SU }(3)$, and use them to prove an asymptotic formula for the number of $n$-dimensional representations of ${\rm SU }(3)$ counted up to equivalence. Our analysis also relates the Witten zeta function of ${\rm SU} (3)$ to a summation identity for Bernoulli numbers discovered in 2008 by Agoh and Dilcher. We give a new proof of that identity and show that it is a special case of a stronger identity involving the Eisenstein series.
Keywords:
derive results about properties witten zeta function associated group prove asymptotic formula number n dimensional representations counted equivalence analysis relates witten zeta function summation identity bernoulli numbers discovered agoh dilcher proof identity special stronger identity involving eisenstein series
Affiliations des auteurs :
Dan Romik  1
@article{10_4064_aa8455_3_2017,
author = {Dan Romik},
title = {On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the {Bernoulli} numbers, and the {Witten} zeta function},
journal = {Acta Arithmetica},
pages = {111--159},
year = {2017},
volume = {180},
number = {2},
doi = {10.4064/aa8455-3-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8455-3-2017/}
}
TY - JOUR
AU - Dan Romik
TI - On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the Bernoulli numbers, and the Witten zeta function
JO - Acta Arithmetica
PY - 2017
SP - 111
EP - 159
VL - 180
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8455-3-2017/
DO - 10.4064/aa8455-3-2017
LA - en
ID - 10_4064_aa8455_3_2017
ER -
%0 Journal Article
%A Dan Romik
%T On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the Bernoulli numbers, and the Witten zeta function
%J Acta Arithmetica
%D 2017
%P 111-159
%V 180
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8455-3-2017/
%R 10.4064/aa8455-3-2017
%G en
%F 10_4064_aa8455_3_2017
Dan Romik. On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the Bernoulli numbers, and the Witten zeta function. Acta Arithmetica, Tome 180 (2017) no. 2, pp. 111-159. doi: 10.4064/aa8455-3-2017
Cité par Sources :