On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the Bernoulli numbers, and the Witten zeta function
Acta Arithmetica, Tome 180 (2017) no. 2, pp. 111-159.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We derive new results about properties of the Witten zeta function associated with the group ${\rm SU }(3)$, and use them to prove an asymptotic formula for the number of $n$-dimensional representations of ${\rm SU }(3)$ counted up to equivalence. Our analysis also relates the Witten zeta function of ${\rm SU} (3)$ to a summation identity for Bernoulli numbers discovered in 2008 by Agoh and Dilcher. We give a new proof of that identity and show that it is a special case of a stronger identity involving the Eisenstein series.
DOI : 10.4064/aa8455-3-2017
Keywords: derive results about properties witten zeta function associated group prove asymptotic formula number n dimensional representations counted equivalence analysis relates witten zeta function summation identity bernoulli numbers discovered agoh dilcher proof identity special stronger identity involving eisenstein series

Dan Romik 1

1 Department of Mathematics University of California, Davis One Shields Ave. Davis, CA 95616, U.S.A.
@article{10_4064_aa8455_3_2017,
     author = {Dan Romik},
     title = {On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the {Bernoulli} numbers, and the {Witten} zeta function},
     journal = {Acta Arithmetica},
     pages = {111--159},
     publisher = {mathdoc},
     volume = {180},
     number = {2},
     year = {2017},
     doi = {10.4064/aa8455-3-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8455-3-2017/}
}
TY  - JOUR
AU  - Dan Romik
TI  - On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the Bernoulli numbers, and the Witten zeta function
JO  - Acta Arithmetica
PY  - 2017
SP  - 111
EP  - 159
VL  - 180
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8455-3-2017/
DO  - 10.4064/aa8455-3-2017
LA  - en
ID  - 10_4064_aa8455_3_2017
ER  - 
%0 Journal Article
%A Dan Romik
%T On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the Bernoulli numbers, and the Witten zeta function
%J Acta Arithmetica
%D 2017
%P 111-159
%V 180
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8455-3-2017/
%R 10.4064/aa8455-3-2017
%G en
%F 10_4064_aa8455_3_2017
Dan Romik. On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the Bernoulli numbers, and the Witten zeta function. Acta Arithmetica, Tome 180 (2017) no. 2, pp. 111-159. doi : 10.4064/aa8455-3-2017. http://geodesic.mathdoc.fr/articles/10.4064/aa8455-3-2017/

Cité par Sources :