On Waring's problem for intermediate powers
Acta Arithmetica, Tome 176 (2016) no. 3, pp. 241-247.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G(k)$ denote the least number $s$ such that every sufficiently large natural number is the sum of at most $s$ positive integral $k$th powers. We show that $G(7)\le 31$, $G(8)\le 39$, $G(9)\le 47$, $G(10)\le 55$, $G(11)\le 63$, $G(12)\le 72$, $G(13)\le 81$, $G(14)\le 90$, $G(15)\le 99$, $G(16)\le 108$.
DOI : 10.4064/aa8439-8-2016
Keywords: denote least number every sufficiently large natural number sum positive integral kth powers

Trevor D. Wooley 1

1 School of Mathematics University of Bristol University Walk, Clifton Bristol BS8 1TW, United Kingdom
@article{10_4064_aa8439_8_2016,
     author = {Trevor D. Wooley},
     title = {On {Waring's} problem for intermediate powers},
     journal = {Acta Arithmetica},
     pages = {241--247},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2016},
     doi = {10.4064/aa8439-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8439-8-2016/}
}
TY  - JOUR
AU  - Trevor D. Wooley
TI  - On Waring's problem for intermediate powers
JO  - Acta Arithmetica
PY  - 2016
SP  - 241
EP  - 247
VL  - 176
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8439-8-2016/
DO  - 10.4064/aa8439-8-2016
LA  - en
ID  - 10_4064_aa8439_8_2016
ER  - 
%0 Journal Article
%A Trevor D. Wooley
%T On Waring's problem for intermediate powers
%J Acta Arithmetica
%D 2016
%P 241-247
%V 176
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8439-8-2016/
%R 10.4064/aa8439-8-2016
%G en
%F 10_4064_aa8439_8_2016
Trevor D. Wooley. On Waring's problem for intermediate powers. Acta Arithmetica, Tome 176 (2016) no. 3, pp. 241-247. doi : 10.4064/aa8439-8-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8439-8-2016/

Cité par Sources :