On Waring's problem for intermediate powers
Acta Arithmetica, Tome 176 (2016) no. 3, pp. 241-247
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $G(k)$ denote the least number $s$ such that every sufficiently large natural number is the sum of at most $s$ positive integral $k$th powers. We show that $G(7)\le 31$, $G(8)\le 39$, $G(9)\le 47$, $G(10)\le 55$, $G(11)\le 63$, $G(12)\le 72$, $G(13)\le 81$, $G(14)\le 90$, $G(15)\le 99$, $G(16)\le 108$.
Keywords:
denote least number every sufficiently large natural number sum positive integral kth powers
Affiliations des auteurs :
Trevor D. Wooley 1
@article{10_4064_aa8439_8_2016,
author = {Trevor D. Wooley},
title = {On {Waring's} problem for intermediate powers},
journal = {Acta Arithmetica},
pages = {241--247},
year = {2016},
volume = {176},
number = {3},
doi = {10.4064/aa8439-8-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8439-8-2016/}
}
Trevor D. Wooley. On Waring's problem for intermediate powers. Acta Arithmetica, Tome 176 (2016) no. 3, pp. 241-247. doi: 10.4064/aa8439-8-2016
Cité par Sources :