On square classes in generalized Fibonacci sequences
Acta Arithmetica, Tome 174 (2016) no. 3, pp. 277-295
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $P$ and $Q$ be nonzero integers. The generalized Fibonacci and Lucas
sequences are defined respectively as follows: $U_{0}=0,U_{1}=1,$ $%
V_{0}=2,V_{1}=P$ and $U_{n+1}=PU_{n}+QU_{n-1},$ $V_{n+1}=PV_{n}+QV_{n-1}$
for $n\geq 1$. In this paper, when $w\in \{ 1,2,3,6\} ,$ for all
odd relatively prime values of $P$ and $Q$ such that $P\geq 1$ and $P^{2}+4Q \gt 0,$ we determine all $n$ and $m$ satisfying the equation $U_{n}=wU_{m}x^{2}.$ In particular, when $k\,|\,P$ and $k \gt 1$, we solve the equations
$U_{n}=kx^{2}$ and $U_{n}=2kx^{2}.$ As a result, we determine all $n$ such that $U_{n}=6x^{2}.$
Keywords:
nonzero integers generalized fibonacci lucas sequences defined respectively follows n n geq paper odd relatively prime values geq determine satisfying equation particular solve equations result determine
Affiliations des auteurs :
Zafer Şiar 1 ; Refik Keskin 2
@article{10_4064_aa8436_4_2016,
author = {Zafer \c{S}iar and Refik Keskin},
title = {On square classes in generalized {Fibonacci} sequences},
journal = {Acta Arithmetica},
pages = {277--295},
publisher = {mathdoc},
volume = {174},
number = {3},
year = {2016},
doi = {10.4064/aa8436-4-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8436-4-2016/}
}
TY - JOUR AU - Zafer Şiar AU - Refik Keskin TI - On square classes in generalized Fibonacci sequences JO - Acta Arithmetica PY - 2016 SP - 277 EP - 295 VL - 174 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8436-4-2016/ DO - 10.4064/aa8436-4-2016 LA - en ID - 10_4064_aa8436_4_2016 ER -
Zafer Şiar; Refik Keskin. On square classes in generalized Fibonacci sequences. Acta Arithmetica, Tome 174 (2016) no. 3, pp. 277-295. doi: 10.4064/aa8436-4-2016
Cité par Sources :