On square classes in generalized Fibonacci sequences
Acta Arithmetica, Tome 174 (2016) no. 3, pp. 277-295.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $P$ and $Q$ be nonzero integers. The generalized Fibonacci and Lucas sequences are defined respectively as follows: $U_{0}=0,U_{1}=1,$ $% V_{0}=2,V_{1}=P$ and $U_{n+1}=PU_{n}+QU_{n-1},$ $V_{n+1}=PV_{n}+QV_{n-1}$ for $n\geq 1$. In this paper, when $w\in \{ 1,2,3,6\} ,$ for all odd relatively prime values of $P$ and $Q$ such that $P\geq 1$ and $P^{2}+4Q \gt 0,$ we determine all $n$ and $m$ satisfying the equation $U_{n}=wU_{m}x^{2}.$ In particular, when $k\,|\,P$ and $k \gt 1$, we solve the equations $U_{n}=kx^{2}$ and $U_{n}=2kx^{2}.$ As a result, we determine all $n$ such that $U_{n}=6x^{2}.$
DOI : 10.4064/aa8436-4-2016
Keywords: nonzero integers generalized fibonacci lucas sequences defined respectively follows n n geq paper odd relatively prime values geq determine satisfying equation particular solve equations result determine

Zafer Şiar 1 ; Refik Keskin 2

1 Mathematics Department Bingöl University 12000 Bingöl, Turkey
2 Mathematics Department Sakarya University 54050 Sakarya, Turkey
@article{10_4064_aa8436_4_2016,
     author = {Zafer \c{S}iar and Refik Keskin},
     title = {On square classes in generalized {Fibonacci} sequences},
     journal = {Acta Arithmetica},
     pages = {277--295},
     publisher = {mathdoc},
     volume = {174},
     number = {3},
     year = {2016},
     doi = {10.4064/aa8436-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8436-4-2016/}
}
TY  - JOUR
AU  - Zafer Şiar
AU  - Refik Keskin
TI  - On square classes in generalized Fibonacci sequences
JO  - Acta Arithmetica
PY  - 2016
SP  - 277
EP  - 295
VL  - 174
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8436-4-2016/
DO  - 10.4064/aa8436-4-2016
LA  - en
ID  - 10_4064_aa8436_4_2016
ER  - 
%0 Journal Article
%A Zafer Şiar
%A Refik Keskin
%T On square classes in generalized Fibonacci sequences
%J Acta Arithmetica
%D 2016
%P 277-295
%V 174
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8436-4-2016/
%R 10.4064/aa8436-4-2016
%G en
%F 10_4064_aa8436_4_2016
Zafer Şiar; Refik Keskin. On square classes in generalized Fibonacci sequences. Acta Arithmetica, Tome 174 (2016) no. 3, pp. 277-295. doi : 10.4064/aa8436-4-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8436-4-2016/

Cité par Sources :