A quantitative form of the Erdős–Birch theorem
Acta Arithmetica, Tome 178 (2017) no. 4, pp. 301-311.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In 1959, B. J. Birch proved that for any coprime integers $p,q$ greater than 1, there exists a number $B$ such that every integer $n \gt B$ can be expressed as the sum of distinct terms taken from $\{ p^aq^b \mid a\ge 0,\, b\ge 0, a, b\in \mathbb{Z}\} $. In this paper, it is proved that there exist two positive integers $K$ and $B$ with $\log_2 \log_2 K \lt q^{2p}$ and $\log_2 \log_2 \log_2 B \lt q^{2p}$ such that every integer $n\ge B$ can be expressed as the sum of distinct terms taken from $\{p^aq^b \mid a\ge 0,\, 0\le b\le K,\, a+b \gt 0,\, a, b\in \mathbb{Z}\}$, where $\log_2$ means the logarithm to base 2. Up to our knowledge, this is the first bound for $B$.
DOI : 10.4064/aa8434-10-2016
Mots-clés : birch proved coprime integers greater nbsp there exists number every integer expressed sum distinct terms taken mid mathbb paper proved there exist positive integers log log log log log every integer expressed sum distinct terms taken mid mathbb where log means logarithm base nbsp knowledge first bound

Jin-Hui Fang 1 ; Yong-Gao Chen 2

1 Department of Mathematics Nanjing University of Information Science and Technology Nanjing 210044, P.R. China
2 School of Mathematical Sciences and Institute of Mathematics Nanjing Normal University Nanjing 210023, P.R. China
@article{10_4064_aa8434_10_2016,
     author = {Jin-Hui Fang and Yong-Gao Chen},
     title = {A quantitative form of the {Erd\H{o}s{\textendash}Birch} theorem},
     journal = {Acta Arithmetica},
     pages = {301--311},
     publisher = {mathdoc},
     volume = {178},
     number = {4},
     year = {2017},
     doi = {10.4064/aa8434-10-2016},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8434-10-2016/}
}
TY  - JOUR
AU  - Jin-Hui Fang
AU  - Yong-Gao Chen
TI  - A quantitative form of the Erdős–Birch theorem
JO  - Acta Arithmetica
PY  - 2017
SP  - 301
EP  - 311
VL  - 178
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8434-10-2016/
DO  - 10.4064/aa8434-10-2016
LA  - de
ID  - 10_4064_aa8434_10_2016
ER  - 
%0 Journal Article
%A Jin-Hui Fang
%A Yong-Gao Chen
%T A quantitative form of the Erdős–Birch theorem
%J Acta Arithmetica
%D 2017
%P 301-311
%V 178
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8434-10-2016/
%R 10.4064/aa8434-10-2016
%G de
%F 10_4064_aa8434_10_2016
Jin-Hui Fang; Yong-Gao Chen. A quantitative form of the Erdős–Birch theorem. Acta Arithmetica, Tome 178 (2017) no. 4, pp. 301-311. doi : 10.4064/aa8434-10-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8434-10-2016/

Cité par Sources :