A quantitative form of the Erdős–Birch theorem
Acta Arithmetica, Tome 178 (2017) no. 4, pp. 301-311
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In 1959, B. J. Birch proved that for any coprime integers $p,q$
greater than 1, there exists a number $B$ such that every integer
$n \gt B$ can be expressed as the sum of distinct terms taken from $\{
p^aq^b \mid a\ge 0,\, b\ge 0, a, b\in \mathbb{Z}\} $. In this paper,
it is proved that there exist two positive integers $K$ and $B$
with $\log_2 \log_2 K \lt q^{2p}$ and $\log_2 \log_2 \log_2 B \lt q^{2p}$
such that every integer $n\ge B$ can be expressed as the sum of
distinct terms taken from $\{p^aq^b \mid a\ge 0,\, 0\le b\le K,\,
a+b \gt 0,\, a, b\in \mathbb{Z}\}$, where $\log_2$ means the logarithm
to base 2. Up to our knowledge, this is the first bound for
$B$.
Mots-clés :
birch proved coprime integers greater nbsp there exists number every integer expressed sum distinct terms taken mid mathbb paper proved there exist positive integers log log log log log every integer expressed sum distinct terms taken mid mathbb where log means logarithm base nbsp knowledge first bound
Affiliations des auteurs :
Jin-Hui Fang 1 ; Yong-Gao Chen 2
@article{10_4064_aa8434_10_2016,
author = {Jin-Hui Fang and Yong-Gao Chen},
title = {A quantitative form of the {Erd\H{o}s{\textendash}Birch} theorem},
journal = {Acta Arithmetica},
pages = {301--311},
publisher = {mathdoc},
volume = {178},
number = {4},
year = {2017},
doi = {10.4064/aa8434-10-2016},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8434-10-2016/}
}
TY - JOUR AU - Jin-Hui Fang AU - Yong-Gao Chen TI - A quantitative form of the Erdős–Birch theorem JO - Acta Arithmetica PY - 2017 SP - 301 EP - 311 VL - 178 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8434-10-2016/ DO - 10.4064/aa8434-10-2016 LA - de ID - 10_4064_aa8434_10_2016 ER -
Jin-Hui Fang; Yong-Gao Chen. A quantitative form of the Erdős–Birch theorem. Acta Arithmetica, Tome 178 (2017) no. 4, pp. 301-311. doi: 10.4064/aa8434-10-2016
Cité par Sources :