An explicit hybrid estimate for $L(1/2+it,\chi )$
Acta Arithmetica, Tome 176 (2016) no. 3, pp. 211-239
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
An explicit hybrid estimate for $L(1/2+it,\chi )$ is derived, where $\chi $ is a Dirichlet character modulo $q$. The estimate applies when $t$ is bounded away from zero, and is most effective when $q$ is powerfull, yielding an explicit Weyl bound in this case. The estimate takes a particularly simple form if $q$ is a sixth power. Several hybrid lemmas of van der Corput–Weyl type are presented.
Keywords:
explicit hybrid estimate chi derived where chi dirichlet character modulo estimate applies bounded away zero effective powerfull yielding explicit weyl bound estimate takes particularly simple form sixth power several hybrid lemmas van der corput weyl type presented
Affiliations des auteurs :
Ghaith A. Hiary 1
@article{10_4064_aa8433_7_2016,
author = {Ghaith A. Hiary},
title = {An explicit hybrid estimate for $L(1/2+it,\chi )$},
journal = {Acta Arithmetica},
pages = {211--239},
year = {2016},
volume = {176},
number = {3},
doi = {10.4064/aa8433-7-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8433-7-2016/}
}
Ghaith A. Hiary. An explicit hybrid estimate for $L(1/2+it,\chi )$. Acta Arithmetica, Tome 176 (2016) no. 3, pp. 211-239. doi: 10.4064/aa8433-7-2016
Cité par Sources :