Relative extensions of number fields and Greenberg’s Generalised Conjecture
Acta Arithmetica, Tome 174 (2016) no. 4, pp. 367-392.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $p$ be a fixed prime. In this article, we will prove several results concerning Greenberg’s Generalised Conjecture (GGC). On the one hand, we will prove that whenever a slightly stronger form of (GGC) holds for a number field $K$ (which will be the case in most of the examples), then the conjecture also holds for every finite normal $p$-ramified $p$-extension of $K$. On the other hand, we will directly prove that (GGC) holds for certain number fields containing exactly one prime above $p$. These results are based on the insight that the validity of (GGC) for some number field $K$ can be checked by studying $\mathbb Z_p$- and $\mathbb Z_p^2$-extensions of $K$. We will also provide new examples in which (GGC) holds in a non-trivial way.
DOI : 10.4064/aa8423-5-2016
Keywords: fixed prime article prove several results concerning greenberg generalised conjecture ggc prove whenever slightly stronger form ggc holds number field which the examples conjecture holds every finite normal p ramified p extension other directly prove ggc holds certain number fields containing exactly prime above these results based insight validity ggc number field checked studying mathbb p mathbb extensions provide examples which ggc holds non trivial

Sören Kleine 1

1 Institut für Theoretische Informatik, Mathematik und Operations Research Universität der Bundeswehr München Werner-Heisenberg-Weg 39 D-85577 Neubiberg, Germany
@article{10_4064_aa8423_5_2016,
     author = {S\"oren Kleine},
     title = {Relative extensions of number fields and {Greenberg{\textquoteright}s} {Generalised} {Conjecture}},
     journal = {Acta Arithmetica},
     pages = {367--392},
     publisher = {mathdoc},
     volume = {174},
     number = {4},
     year = {2016},
     doi = {10.4064/aa8423-5-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8423-5-2016/}
}
TY  - JOUR
AU  - Sören Kleine
TI  - Relative extensions of number fields and Greenberg’s Generalised Conjecture
JO  - Acta Arithmetica
PY  - 2016
SP  - 367
EP  - 392
VL  - 174
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8423-5-2016/
DO  - 10.4064/aa8423-5-2016
LA  - en
ID  - 10_4064_aa8423_5_2016
ER  - 
%0 Journal Article
%A Sören Kleine
%T Relative extensions of number fields and Greenberg’s Generalised Conjecture
%J Acta Arithmetica
%D 2016
%P 367-392
%V 174
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8423-5-2016/
%R 10.4064/aa8423-5-2016
%G en
%F 10_4064_aa8423_5_2016
Sören Kleine. Relative extensions of number fields and Greenberg’s Generalised Conjecture. Acta Arithmetica, Tome 174 (2016) no. 4, pp. 367-392. doi : 10.4064/aa8423-5-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8423-5-2016/

Cité par Sources :