Contre-exemples au principe de Hasse pour les courbes de Fermat
Acta Arithmetica, Tome 174 (2016) no. 2, pp. 189-197
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $p$ be an odd prime number. In this paper, we are concerned with the behaviour of Fermat curves defined over $\mathbb Q$, given by equations
$ax^p+by^p+cz^p=0$, with respect to the local-global Hasse principle. It is conjectured that there exist infinitely many Fermat curves of exponent $p$ which are counterexamples to the Hasse principle. This is a consequence of the abc-conjecture if $p\geq 5$. Using a cyclotomic approach due to H. Cohen and Chebotarev’s density theorem, we obtain a partial result towards this conjecture, by proving it for $p\leq 19$.
Mots-clés :
odd prime number paper concerned behaviour fermat curves defined mathbb given equations respect local global hasse principle conjectured there exist infinitely many fermat curves exponent which counterexamples hasse principle consequence abc conjecture geq using cyclotomic approach due cohen chebotarev density theorem obtain partial result towards conjecture proving leq
Affiliations des auteurs :
Alain Kraus  1
@article{10_4064_aa8420_4_2016,
author = {Alain Kraus},
title = {Contre-exemples au principe de {Hasse} pour les courbes de {Fermat}},
journal = {Acta Arithmetica},
pages = {189--197},
year = {2016},
volume = {174},
number = {2},
doi = {10.4064/aa8420-4-2016},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8420-4-2016/}
}
Alain Kraus. Contre-exemples au principe de Hasse pour les courbes de Fermat. Acta Arithmetica, Tome 174 (2016) no. 2, pp. 189-197. doi: 10.4064/aa8420-4-2016
Cité par Sources :