Primes in arithmetic progressions to spaced moduli. III
Acta Arithmetica, Tome 179 (2017) no. 2, pp. 125-132.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let \[E(x,q) = \max_{(a,q) = 1} \biggl| \sum_{\substack{n \le x\\ n \equiv a\, ({\rm mod}\, q)}} \Lambda(n) - \frac x{\phi(q)}\biggr|.\] We show that, for $S$ the set of squares, \[\sum_{\substack{q \in S\\ Q \lt q \le 2Q}} E(x, q) \ll_{A,\varepsilon} x Q^{-1/2}(\log x)^{-A} \] for $\varepsilon \gt 0$, $A \gt 0$, and $Q \le x^{1/2-\varepsilon}$. This improves a theorem of the author.
DOI : 10.4064/aa8401-5-2017
Keywords: max biggl sum substack equiv mod lambda frac phi biggr set squares sum substack varepsilon log a varepsilon varepsilon improves theorem author

Roger Baker 1

1 Department of Mathematics Brigham Young University Provo, UT 84602, U.S.A.
@article{10_4064_aa8401_5_2017,
     author = {Roger Baker},
     title = {Primes in arithmetic progressions to spaced moduli. {III}},
     journal = {Acta Arithmetica},
     pages = {125--132},
     publisher = {mathdoc},
     volume = {179},
     number = {2},
     year = {2017},
     doi = {10.4064/aa8401-5-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8401-5-2017/}
}
TY  - JOUR
AU  - Roger Baker
TI  - Primes in arithmetic progressions to spaced moduli. III
JO  - Acta Arithmetica
PY  - 2017
SP  - 125
EP  - 132
VL  - 179
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8401-5-2017/
DO  - 10.4064/aa8401-5-2017
LA  - en
ID  - 10_4064_aa8401_5_2017
ER  - 
%0 Journal Article
%A Roger Baker
%T Primes in arithmetic progressions to spaced moduli. III
%J Acta Arithmetica
%D 2017
%P 125-132
%V 179
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8401-5-2017/
%R 10.4064/aa8401-5-2017
%G en
%F 10_4064_aa8401_5_2017
Roger Baker. Primes in arithmetic progressions to spaced moduli. III. Acta Arithmetica, Tome 179 (2017) no. 2, pp. 125-132. doi : 10.4064/aa8401-5-2017. http://geodesic.mathdoc.fr/articles/10.4064/aa8401-5-2017/

Cité par Sources :