Primes in arithmetic progressions to spaced moduli. III
Acta Arithmetica, Tome 179 (2017) no. 2, pp. 125-132
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let \[E(x,q) = \max_{(a,q) = 1} \biggl| \sum_{\substack{n \le x\\ n \equiv a\, ({\rm mod}\, q)}} \Lambda(n) - \frac x{\phi(q)}\biggr|.\]
We show that, for $S$ the set of squares, \[\sum_{\substack{q \in S\\ Q \lt q \le 2Q}} E(x, q) \ll_{A,\varepsilon} x Q^{-1/2}(\log x)^{-A} \]
for $\varepsilon \gt 0$, $A \gt 0$, and $Q \le x^{1/2-\varepsilon}$. This improves a theorem of the author.
Keywords:
max biggl sum substack equiv mod lambda frac phi biggr set squares sum substack varepsilon log a varepsilon varepsilon improves theorem author
Affiliations des auteurs :
Roger Baker 1
@article{10_4064_aa8401_5_2017,
author = {Roger Baker},
title = {Primes in arithmetic progressions to spaced moduli. {III}},
journal = {Acta Arithmetica},
pages = {125--132},
year = {2017},
volume = {179},
number = {2},
doi = {10.4064/aa8401-5-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8401-5-2017/}
}
Roger Baker. Primes in arithmetic progressions to spaced moduli. III. Acta Arithmetica, Tome 179 (2017) no. 2, pp. 125-132. doi: 10.4064/aa8401-5-2017
Cité par Sources :