An asymptotic formula related to the sums of divisors
Acta Arithmetica, Tome 175 (2016) no. 2, pp. 183-200
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $d(n)$ be the number of divisors of $n$, and $k$ a positive integer. It is proved that the sum $\sum_{1\leq m_1,\dots,m_s\leq X}d(m_1^k+\cdots+m_s^k)$ has an asymptotic formula for $k\geq2$ and $s \gt \min\{2^{k-1}, k^2+k-2\}.$
Keywords:
number divisors positive integer proved sum sum leq dots leq cdots has asymptotic formula geq min k k
Affiliations des auteurs :
Meng Zhang 1
@article{10_4064_aa8391_5_2016,
author = {Meng Zhang},
title = {An asymptotic formula related to the sums of divisors},
journal = {Acta Arithmetica},
pages = {183--200},
publisher = {mathdoc},
volume = {175},
number = {2},
year = {2016},
doi = {10.4064/aa8391-5-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8391-5-2016/}
}
Meng Zhang. An asymptotic formula related to the sums of divisors. Acta Arithmetica, Tome 175 (2016) no. 2, pp. 183-200. doi: 10.4064/aa8391-5-2016
Cité par Sources :