An asymptotic formula related to the sums of divisors
Acta Arithmetica, Tome 175 (2016) no. 2, pp. 183-200.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $d(n)$ be the number of divisors of $n$, and $k$ a positive integer. It is proved that the sum $\sum_{1\leq m_1,\dots,m_s\leq X}d(m_1^k+\cdots+m_s^k)$ has an asymptotic formula for $k\geq2$ and $s \gt \min\{2^{k-1}, k^2+k-2\}.$
DOI : 10.4064/aa8391-5-2016
Keywords: number divisors positive integer proved sum sum leq dots leq cdots has asymptotic formula geq min k k

Meng Zhang 1

1 School of Mathematics and Quantitative Economics Shandong University of Finance and Economics 40 Shungeng Road Jinan, Shandong 250014, P.R. China
@article{10_4064_aa8391_5_2016,
     author = {Meng Zhang},
     title = {An asymptotic formula related to the sums of divisors},
     journal = {Acta Arithmetica},
     pages = {183--200},
     publisher = {mathdoc},
     volume = {175},
     number = {2},
     year = {2016},
     doi = {10.4064/aa8391-5-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8391-5-2016/}
}
TY  - JOUR
AU  - Meng Zhang
TI  - An asymptotic formula related to the sums of divisors
JO  - Acta Arithmetica
PY  - 2016
SP  - 183
EP  - 200
VL  - 175
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8391-5-2016/
DO  - 10.4064/aa8391-5-2016
LA  - en
ID  - 10_4064_aa8391_5_2016
ER  - 
%0 Journal Article
%A Meng Zhang
%T An asymptotic formula related to the sums of divisors
%J Acta Arithmetica
%D 2016
%P 183-200
%V 175
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8391-5-2016/
%R 10.4064/aa8391-5-2016
%G en
%F 10_4064_aa8391_5_2016
Meng Zhang. An asymptotic formula related to the sums of divisors. Acta Arithmetica, Tome 175 (2016) no. 2, pp. 183-200. doi : 10.4064/aa8391-5-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8391-5-2016/

Cité par Sources :