Further irreducibility criteria for polynomials with non-negative coefficients
Acta Arithmetica, Tome 175 (2016) no. 2, pp. 137-181
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f(x)$ be a polynomial with non-negative integer coefficients. This paper produces sharp bounds $M_{1}(b)$ depending on an integer $b \in [3,20]$ such that if each coefficient of $f(x)$ is $\le M_{1}(b)$ and $f(b)$ is prime, then $f(x)$ is irreducible. A number of other related results are obtained.
Keywords:
polynomial non negative integer coefficients paper produces sharp bounds depending integer each coefficient prime irreducible number other related results obtained
Affiliations des auteurs :
Morgan Cole 1 ; Scott Dunn 2 ; Michael Filaseta 2
@article{10_4064_aa8376_5_2016,
author = {Morgan Cole and Scott Dunn and Michael Filaseta},
title = {Further irreducibility criteria for polynomials with non-negative coefficients},
journal = {Acta Arithmetica},
pages = {137--181},
publisher = {mathdoc},
volume = {175},
number = {2},
year = {2016},
doi = {10.4064/aa8376-5-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8376-5-2016/}
}
TY - JOUR AU - Morgan Cole AU - Scott Dunn AU - Michael Filaseta TI - Further irreducibility criteria for polynomials with non-negative coefficients JO - Acta Arithmetica PY - 2016 SP - 137 EP - 181 VL - 175 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8376-5-2016/ DO - 10.4064/aa8376-5-2016 LA - en ID - 10_4064_aa8376_5_2016 ER -
%0 Journal Article %A Morgan Cole %A Scott Dunn %A Michael Filaseta %T Further irreducibility criteria for polynomials with non-negative coefficients %J Acta Arithmetica %D 2016 %P 137-181 %V 175 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8376-5-2016/ %R 10.4064/aa8376-5-2016 %G en %F 10_4064_aa8376_5_2016
Morgan Cole; Scott Dunn; Michael Filaseta. Further irreducibility criteria for polynomials with non-negative coefficients. Acta Arithmetica, Tome 175 (2016) no. 2, pp. 137-181. doi: 10.4064/aa8376-5-2016
Cité par Sources :