On uniform approximation to real numbers
Acta Arithmetica, Tome 175 (2016) no. 3, pp. 255-268
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $n \ge 2$ be an integer and $\xi$ a transcendental real number. We establish several new relations between the values at $\xi$ of the exponents of Diophantine approximation $w_n$, $w_{n}^{\ast}$, $\widehat{w}_{n}$, and $\widehat{w}_{n}^{\ast}$. Combining our results with recent estimates by Schmidt and Summerer
allows us to refine the inequality $\widehat{w}_{n}(\xi) \le 2n-1$ proved by Davenport and Schmidt in 1969.
Keywords:
integer transcendental real number establish several relations between values exponents diophantine approximation ast widehat widehat ast combining results recent estimates schmidt summerer allows refine inequality widehat n proved davenport schmidt
Affiliations des auteurs :
Yann Bugeaud 1 ; Johannes Schleischitz 2
@article{10_4064_aa8372_7_2016,
author = {Yann Bugeaud and Johannes Schleischitz},
title = {On uniform approximation to real numbers},
journal = {Acta Arithmetica},
pages = {255--268},
publisher = {mathdoc},
volume = {175},
number = {3},
year = {2016},
doi = {10.4064/aa8372-7-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8372-7-2016/}
}
TY - JOUR AU - Yann Bugeaud AU - Johannes Schleischitz TI - On uniform approximation to real numbers JO - Acta Arithmetica PY - 2016 SP - 255 EP - 268 VL - 175 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8372-7-2016/ DO - 10.4064/aa8372-7-2016 LA - en ID - 10_4064_aa8372_7_2016 ER -
Yann Bugeaud; Johannes Schleischitz. On uniform approximation to real numbers. Acta Arithmetica, Tome 175 (2016) no. 3, pp. 255-268. doi: 10.4064/aa8372-7-2016
Cité par Sources :