On integers $n$ for which $X^n-1$ has a divisor of every degree
Acta Arithmetica, Tome 175 (2016) no. 3, pp. 225-243.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A positive integer $n$ is called $\varphi$-practical if the polynomial $X^n-1$ has a divisor in $\mathbb Z[X]$ of every degree up to $n$. We show that the count of $\varphi$-practical numbers in $[1, x]$ is asymptotic to $C x/\!\log x$ for some positive constant $C$ as $x \rightarrow \infty$.
DOI : 10.4064/aa8354-6-2016
Keywords: positive integer called varphi practical polynomial n has divisor mathbb every degree count varphi practical numbers asymptotic log positive constant rightarrow infty

Carl Pomerance 1 ; Lola Thompson 2 ; Andreas Weingartner 3

1 Department of Mathematics Dartmouth College Hanover, NH 03755, U.S.A.
2 Department of Mathematics Oberlin College Oberlin, OH 44074, U.S.A.
3 Department of Mathematics Southern Utah University Cedar City, UT 84720, U.S.A.
@article{10_4064_aa8354_6_2016,
     author = {Carl Pomerance and Lola Thompson and Andreas Weingartner},
     title = {On integers $n$ for which $X^n-1$ has a divisor of every degree},
     journal = {Acta Arithmetica},
     pages = {225--243},
     publisher = {mathdoc},
     volume = {175},
     number = {3},
     year = {2016},
     doi = {10.4064/aa8354-6-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8354-6-2016/}
}
TY  - JOUR
AU  - Carl Pomerance
AU  - Lola Thompson
AU  - Andreas Weingartner
TI  - On integers $n$ for which $X^n-1$ has a divisor of every degree
JO  - Acta Arithmetica
PY  - 2016
SP  - 225
EP  - 243
VL  - 175
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8354-6-2016/
DO  - 10.4064/aa8354-6-2016
LA  - en
ID  - 10_4064_aa8354_6_2016
ER  - 
%0 Journal Article
%A Carl Pomerance
%A Lola Thompson
%A Andreas Weingartner
%T On integers $n$ for which $X^n-1$ has a divisor of every degree
%J Acta Arithmetica
%D 2016
%P 225-243
%V 175
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8354-6-2016/
%R 10.4064/aa8354-6-2016
%G en
%F 10_4064_aa8354_6_2016
Carl Pomerance; Lola Thompson; Andreas Weingartner. On integers $n$ for which $X^n-1$ has a divisor of every degree. Acta Arithmetica, Tome 175 (2016) no. 3, pp. 225-243. doi : 10.4064/aa8354-6-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8354-6-2016/

Cité par Sources :