Sur les occurrences des mots dans les nombres premiers
Acta Arithmetica, Tome 178 (2017) no. 1, pp. 15-42
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We generalize Mauduit and Rivat’s theorem on the Rudin–Shapiro sequence. Weakening the hypothesis needed in their theorem, we prove a prime number theorem for a large class of functions defined on the digits. Our result covers the case of generalized Rudin–Shapiro sequences as well as block-additive sequences on finite and infinite expansions. We also give a partial answer to a question posed by Kalai.
Mots-clés :
generalize mauduit rivat theorem rudin shapiro sequence weakening hypothesis needed their theorem prove prime number theorem large class functions defined digits result covers generalized rudin shapiro sequences block additive sequences finite infinite expansions partial answer question posed kalai
Affiliations des auteurs :
Gautier Hanna 1
@article{10_4064_aa8337_8_2016,
author = {Gautier Hanna},
title = {Sur les occurrences des mots dans les nombres premiers},
journal = {Acta Arithmetica},
pages = {15--42},
publisher = {mathdoc},
volume = {178},
number = {1},
year = {2017},
doi = {10.4064/aa8337-8-2016},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8337-8-2016/}
}
Gautier Hanna. Sur les occurrences des mots dans les nombres premiers. Acta Arithmetica, Tome 178 (2017) no. 1, pp. 15-42. doi: 10.4064/aa8337-8-2016
Cité par Sources :