The generalization of Jarník’s identity
Acta Arithmetica, Tome 175 (2016) no. 2, pp. 119-136.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We will give a new proof, using the Parametric Geometry of Numbers, for remarkable inequalities of O. German which generalize the classical Jarník identity on simultaneous approximation. We will also show that these inequalities are best possible.
DOI : 10.4064/aa8316-5-2016
Keywords: proof using parametric geometry numbers remarkable inequalities german which generalize classical jarn identity simultaneous approximation these inequalities best possible

Wolfgang M. Schmidt 1 ; Leonhard Summerer 2

1 Department of Mathematics University of Colorado Boulder, CO 80309-0395, U.S.A.
2 Fakultät für Mathematik der Universität Wien Oskar-Morgenstern-Platz 1 1090 Wien, Austria
@article{10_4064_aa8316_5_2016,
     author = {Wolfgang M. Schmidt and Leonhard Summerer},
     title = {The generalization of {Jarn{\'\i}k{\textquoteright}s} identity},
     journal = {Acta Arithmetica},
     pages = {119--136},
     publisher = {mathdoc},
     volume = {175},
     number = {2},
     year = {2016},
     doi = {10.4064/aa8316-5-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8316-5-2016/}
}
TY  - JOUR
AU  - Wolfgang M. Schmidt
AU  - Leonhard Summerer
TI  - The generalization of Jarník’s identity
JO  - Acta Arithmetica
PY  - 2016
SP  - 119
EP  - 136
VL  - 175
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8316-5-2016/
DO  - 10.4064/aa8316-5-2016
LA  - en
ID  - 10_4064_aa8316_5_2016
ER  - 
%0 Journal Article
%A Wolfgang M. Schmidt
%A Leonhard Summerer
%T The generalization of Jarník’s identity
%J Acta Arithmetica
%D 2016
%P 119-136
%V 175
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8316-5-2016/
%R 10.4064/aa8316-5-2016
%G en
%F 10_4064_aa8316_5_2016
Wolfgang M. Schmidt; Leonhard Summerer. The generalization of Jarník’s identity. Acta Arithmetica, Tome 175 (2016) no. 2, pp. 119-136. doi : 10.4064/aa8316-5-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8316-5-2016/

Cité par Sources :