La conjecture de Manin pour certaines surfaces de Châtelet
Acta Arithmetica, Tome 174 (2016) no. 1, pp. 31-97.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Following the line of attack of La Bretèche, Browning and Peyre, we prove Manin’s conjecture in its strong form conjectured by Peyre for a family of Châtelet surfaces which are defined as minimal proper smooth models of affine surfaces of the form $$ Y^2-aZ^2=F(X,1), $$ where $a=-1$, $F \in \mathbb{Z}[x_1,x_2]$ is a polynomial of degree 4 whose factorisation into irreducibles contains two non-proportional linear factors and a quadratic factor which is irreducible over $\mathbb{Q}[i]$. This result deals with the last remaining case of Manin’s conjecture for Châtelet surfaces with $a=-1$ and essentially settles Manin’s conjecture for Châtelet surfaces with $a \lt 0$.
DOI : 10.4064/aa8312-2-2016
Mots-clés : following line attack bret che browning peyre prove manin conjecture its strong form conjectured peyre family telet surfaces which defined minimal proper smooth models affine surfaces form az where mathbb polynomial degree whose factorisation irreducibles contains non proportional linear factors quadratic factor which irreducible mathbb result deals remaining manin conjecture telet surfaces nbsp essentially settles manin conjecture telet surfaces

Kevin Destagnol 1

1 Institut de Mathématiques de Jussieu-Paris Rive Gauche UMR 7586 Université Paris Diderot-Paris 7 Case postale 6052 Bâtiment Sophie Germain 75205 Paris Cedex 13, France URL: <a href="http://webusers.imj-prg.fr/~kevin.destagnol/">webusers.imj-prg.fr/~kevin.destagnol/</a>
@article{10_4064_aa8312_2_2016,
     author = {Kevin Destagnol},
     title = {La conjecture de {Manin} pour certaines surfaces de {Ch\^atelet}},
     journal = {Acta Arithmetica},
     pages = {31--97},
     publisher = {mathdoc},
     volume = {174},
     number = {1},
     year = {2016},
     doi = {10.4064/aa8312-2-2016},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8312-2-2016/}
}
TY  - JOUR
AU  - Kevin Destagnol
TI  - La conjecture de Manin pour certaines surfaces de Châtelet
JO  - Acta Arithmetica
PY  - 2016
SP  - 31
EP  - 97
VL  - 174
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8312-2-2016/
DO  - 10.4064/aa8312-2-2016
LA  - fr
ID  - 10_4064_aa8312_2_2016
ER  - 
%0 Journal Article
%A Kevin Destagnol
%T La conjecture de Manin pour certaines surfaces de Châtelet
%J Acta Arithmetica
%D 2016
%P 31-97
%V 174
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8312-2-2016/
%R 10.4064/aa8312-2-2016
%G fr
%F 10_4064_aa8312_2_2016
Kevin Destagnol. La conjecture de Manin pour certaines surfaces de Châtelet. Acta Arithmetica, Tome 174 (2016) no. 1, pp. 31-97. doi : 10.4064/aa8312-2-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8312-2-2016/

Cité par Sources :