On the $p$-parts of Weyl group multiple Dirichlet series
Acta Arithmetica, Tome 179 (2017) no. 4, pp. 301-317.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the structure of $p$-parts of Weyl group multiple Dirichlet series. In particular, we extend results of Chinta, Friedberg, and Gunnells (2008) and show, in the stable case, that the $p$-parts of Chinta and Gunnells (2010) agree with those constructed using the crystal graph technique of Brubaker, Bump, and Friedberg (2006, 2008). In this vein, we give an explicit recurrence relation on the coefficients of the $p$-parts, which allows us to describe the support of the $p$-parts and address the extent to which they are uniquely determined.
DOI : 10.4064/aa8309-5-2017
Keywords: study structure p parts weyl group multiple dirichlet series particular extend results chinta friedberg gunnells stable p parts chinta gunnells agree those constructed using crystal graph technique brubaker bump friedberg vein explicit recurrence relation coefficients p parts which allows describe support p parts address extent which uniquely determined

Holley Friedlander 1

1 Department of Mathematics and Computer Science Dickinson College Carlisle, PA 17013, U.S.A.
@article{10_4064_aa8309_5_2017,
     author = {Holley Friedlander},
     title = {On the $p$-parts of {Weyl} group multiple {Dirichlet} series},
     journal = {Acta Arithmetica},
     pages = {301--317},
     publisher = {mathdoc},
     volume = {179},
     number = {4},
     year = {2017},
     doi = {10.4064/aa8309-5-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8309-5-2017/}
}
TY  - JOUR
AU  - Holley Friedlander
TI  - On the $p$-parts of Weyl group multiple Dirichlet series
JO  - Acta Arithmetica
PY  - 2017
SP  - 301
EP  - 317
VL  - 179
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8309-5-2017/
DO  - 10.4064/aa8309-5-2017
LA  - en
ID  - 10_4064_aa8309_5_2017
ER  - 
%0 Journal Article
%A Holley Friedlander
%T On the $p$-parts of Weyl group multiple Dirichlet series
%J Acta Arithmetica
%D 2017
%P 301-317
%V 179
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8309-5-2017/
%R 10.4064/aa8309-5-2017
%G en
%F 10_4064_aa8309_5_2017
Holley Friedlander. On the $p$-parts of Weyl group multiple Dirichlet series. Acta Arithmetica, Tome 179 (2017) no. 4, pp. 301-317. doi : 10.4064/aa8309-5-2017. http://geodesic.mathdoc.fr/articles/10.4064/aa8309-5-2017/

Cité par Sources :