On the $p$-parts of Weyl group multiple Dirichlet series
Acta Arithmetica, Tome 179 (2017) no. 4, pp. 301-317
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the structure of $p$-parts of Weyl group multiple Dirichlet series. In particular, we extend results of Chinta, Friedberg, and Gunnells (2008) and show, in the stable case, that the $p$-parts of Chinta and Gunnells (2010) agree with those constructed using the crystal graph technique of Brubaker, Bump, and Friedberg (2006, 2008). In this vein, we give an explicit recurrence relation on the coefficients of the $p$-parts, which allows us to describe the support of the $p$-parts and address the extent to which they are uniquely determined.
Keywords:
study structure p parts weyl group multiple dirichlet series particular extend results chinta friedberg gunnells stable p parts chinta gunnells agree those constructed using crystal graph technique brubaker bump friedberg vein explicit recurrence relation coefficients p parts which allows describe support p parts address extent which uniquely determined
Affiliations des auteurs :
Holley Friedlander 1
@article{10_4064_aa8309_5_2017,
author = {Holley Friedlander},
title = {On the $p$-parts of {Weyl} group multiple {Dirichlet} series},
journal = {Acta Arithmetica},
pages = {301--317},
publisher = {mathdoc},
volume = {179},
number = {4},
year = {2017},
doi = {10.4064/aa8309-5-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8309-5-2017/}
}
TY - JOUR AU - Holley Friedlander TI - On the $p$-parts of Weyl group multiple Dirichlet series JO - Acta Arithmetica PY - 2017 SP - 301 EP - 317 VL - 179 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8309-5-2017/ DO - 10.4064/aa8309-5-2017 LA - en ID - 10_4064_aa8309_5_2017 ER -
Holley Friedlander. On the $p$-parts of Weyl group multiple Dirichlet series. Acta Arithmetica, Tome 179 (2017) no. 4, pp. 301-317. doi: 10.4064/aa8309-5-2017
Cité par Sources :