Induced random $\beta $-transformation
Acta Arithmetica, Tome 178 (2017) no. 1, pp. 1-14
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the first return map defined on the switch region induced by the greedy map and the lazy map. In particular we study the allowable sequences of return times, and when the first return map is a generalised Lüroth series transformation. We show that there exists a countable collection $(\mathcal{I}_{n})_{n=1}^{\infty}$ of disjoint intervals such that all sequences of return times are permissible if and only if $\beta\in \mathcal{I}_{n}$ for some $n$. Moreover, we show that there exists a set $M\subseteq(1,2)$ of Hausdorff dimension $1$ and Lebesgue measure zero for which the first return map is a generalised Lüroth series transformation if and only if $\beta\in M$.
Keywords:
study first return map defined switch region induced greedy map lazy map particular study allowable sequences return times first return map generalised roth series transformation there exists countable collection mathcal infty disjoint intervals sequences return times permissible only beta mathcal moreover there exists set subseteq hausdorff dimension lebesgue measure zero which first return map generalised roth series transformation only beta
Affiliations des auteurs :
Simon Baker 1 ; Karma Dajani 2
@article{10_4064_aa8306_8_2016,
author = {Simon Baker and Karma Dajani},
title = {Induced random $\beta $-transformation},
journal = {Acta Arithmetica},
pages = {1--14},
publisher = {mathdoc},
volume = {178},
number = {1},
year = {2017},
doi = {10.4064/aa8306-8-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8306-8-2016/}
}
Simon Baker; Karma Dajani. Induced random $\beta $-transformation. Acta Arithmetica, Tome 178 (2017) no. 1, pp. 1-14. doi: 10.4064/aa8306-8-2016
Cité par Sources :