The density of primes dividing a particular non-linear recurrence sequence
Acta Arithmetica, Tome 175 (2016) no. 1, pp. 71-100.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Define the ECHO sequence $\{b_n\}$ recursively by $(b_0,b_1,b_2,b_3)=(1,1,2,1)$ and for $n\geq 4$, $$ b_n=\begin{cases} \dfrac{b_{n-1}b_{n-3}-b_{n-2}^2}{b_{n-4}} \text{if }n\not\equiv 0\pmod 3,\\ \dfrac{b_{n-1}b_{n-3}-3b_{n-2}^2}{b_{n-4}} \text{if }n\equiv 0\pmod 3.\end{cases} $$ We relate $\{b_n\}$ to the coordinates of points on the elliptic curve $E:y^2+y=x^3-3x+4$. We use Galois representations attached to $E$ to prove that the density of primes dividing a term in this sequence is equal to $\frac{179}{336}$. Furthermore, we describe an infinite family of elliptic curves whose Galois images match those of $E$.
DOI : 10.4064/aa8265-4-2016
Keywords: define echo sequence recursively geq begin cases dfrac n n b n n text equiv pmod dfrac n n n n text equiv pmod end cases relate coordinates points elliptic curve galois representations attached nbsp prove density primes dividing term sequence equal frac furthermore describe infinite family elliptic curves whose galois images match those

Alexi Block Gorman 1 ; Tyler Genao 2 ; Heesu Hwang 3 ; Noam Kantor 4 ; Sarah Parsons 5 ; Jeremy Rouse 5

1 Department of Mathematics Wellesley College Wellesley, MA 02481, U.S.A.
2 Department of Mathematical Sciences Florida Atlantic University Boca Raton, FL 33431, U.S.A.
3 Department of Mathematics Princeton University Princeton, NJ 08544, U.S.A.
4 Department of Mathematics Emory University Atlanta, GA 30322, U.S.A.
5 Department of Mathematics and Statistics Wake Forest University Winston-Salem, NC 27109, U.S.A.
@article{10_4064_aa8265_4_2016,
     author = {Alexi Block Gorman and Tyler Genao and Heesu Hwang and Noam Kantor and Sarah Parsons and Jeremy Rouse},
     title = {The density of primes dividing a particular non-linear recurrence sequence},
     journal = {Acta Arithmetica},
     pages = {71--100},
     publisher = {mathdoc},
     volume = {175},
     number = {1},
     year = {2016},
     doi = {10.4064/aa8265-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8265-4-2016/}
}
TY  - JOUR
AU  - Alexi Block Gorman
AU  - Tyler Genao
AU  - Heesu Hwang
AU  - Noam Kantor
AU  - Sarah Parsons
AU  - Jeremy Rouse
TI  - The density of primes dividing a particular non-linear recurrence sequence
JO  - Acta Arithmetica
PY  - 2016
SP  - 71
EP  - 100
VL  - 175
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8265-4-2016/
DO  - 10.4064/aa8265-4-2016
LA  - en
ID  - 10_4064_aa8265_4_2016
ER  - 
%0 Journal Article
%A Alexi Block Gorman
%A Tyler Genao
%A Heesu Hwang
%A Noam Kantor
%A Sarah Parsons
%A Jeremy Rouse
%T The density of primes dividing a particular non-linear recurrence sequence
%J Acta Arithmetica
%D 2016
%P 71-100
%V 175
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8265-4-2016/
%R 10.4064/aa8265-4-2016
%G en
%F 10_4064_aa8265_4_2016
Alexi Block Gorman; Tyler Genao; Heesu Hwang; Noam Kantor; Sarah Parsons; Jeremy Rouse. The density of primes dividing a particular non-linear recurrence sequence. Acta Arithmetica, Tome 175 (2016) no. 1, pp. 71-100. doi : 10.4064/aa8265-4-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8265-4-2016/

Cité par Sources :