Diophantine triples of Fibonacci numbers
Acta Arithmetica, Tome 175 (2016) no. 1, pp. 57-70
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $F_m$ be the $m$th Fibonacci number. We prove that if $F_{2n}F_k+1$ and $F_{2n+2}F_k+1$ are both perfect squares, then $k=2n+4$ for $n\ge 1$, or $k=2n-2$ for $n\ge 2$, except when $n=2$, in which case we can additionally have $k=1$.
Keywords:
mth fibonacci number prove perfect squares n except which additionally have
Affiliations des auteurs :
Bo He 1 ; Florian Luca 2 ; Alain Togbé 3
@article{10_4064_aa8259_6_2016,
author = {Bo He and Florian Luca and Alain Togb\'e},
title = {Diophantine triples of {Fibonacci} numbers},
journal = {Acta Arithmetica},
pages = {57--70},
year = {2016},
volume = {175},
number = {1},
doi = {10.4064/aa8259-6-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8259-6-2016/}
}
Bo He; Florian Luca; Alain Togbé. Diophantine triples of Fibonacci numbers. Acta Arithmetica, Tome 175 (2016) no. 1, pp. 57-70. doi: 10.4064/aa8259-6-2016
Cité par Sources :