Large Galois images for Jacobian varieties of genus 3 curves
Acta Arithmetica, Tome 174 (2016) no. 4, pp. 339-366
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Given a prime number $\ell \geq 5$, we construct an infinite family of three-dimensional
abelian varieties over $\mathbb{Q}$ such that, for any $A/\mathbb{Q}$ in the family, the
Galois representation $\overline{\rho}_{A,\ell} \colon G_{\mathbb{Q}} \to \mathrm{GSp}_6(\mathbb{F}_{\ell})$
attached to the $\ell$-torsion of $A$ is surjective. Any such variety $A$ will be the
Jacobian of a genus $3$ curve over $\mathbb{Q}$ whose respective reductions at two auxiliary
primes are prescribed to provide us with generators of $\mathrm{Sp}_6(\mathbb{F}_{\ell})$.
Keywords:
given prime number ell geq construct infinite family three dimensional abelian varieties mathbb mathbb family galois representation overline rho ell colon mathbb mathrm gsp mathbb ell attached ell torsion surjective variety jacobian genus curve mathbb whose respective reductions auxiliary primes prescribed provide generators mathrm mathbb ell
Affiliations des auteurs :
Sara Arias-de-Reyna 1 ; Cécile Armana 2 ; Valentijn Karemaker 3 ; Marusia Rebolledo 4 ; Lara Thomas 5 ; Núria Vila 6
@article{10_4064_aa8250_4_2016,
author = {Sara Arias-de-Reyna and C\'ecile Armana and Valentijn Karemaker and Marusia Rebolledo and Lara Thomas and N\'uria Vila},
title = {Large {Galois} images for {Jacobian} varieties of genus 3 curves},
journal = {Acta Arithmetica},
pages = {339--366},
year = {2016},
volume = {174},
number = {4},
doi = {10.4064/aa8250-4-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8250-4-2016/}
}
TY - JOUR AU - Sara Arias-de-Reyna AU - Cécile Armana AU - Valentijn Karemaker AU - Marusia Rebolledo AU - Lara Thomas AU - Núria Vila TI - Large Galois images for Jacobian varieties of genus 3 curves JO - Acta Arithmetica PY - 2016 SP - 339 EP - 366 VL - 174 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8250-4-2016/ DO - 10.4064/aa8250-4-2016 LA - en ID - 10_4064_aa8250_4_2016 ER -
%0 Journal Article %A Sara Arias-de-Reyna %A Cécile Armana %A Valentijn Karemaker %A Marusia Rebolledo %A Lara Thomas %A Núria Vila %T Large Galois images for Jacobian varieties of genus 3 curves %J Acta Arithmetica %D 2016 %P 339-366 %V 174 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4064/aa8250-4-2016/ %R 10.4064/aa8250-4-2016 %G en %F 10_4064_aa8250_4_2016
Sara Arias-de-Reyna; Cécile Armana; Valentijn Karemaker; Marusia Rebolledo; Lara Thomas; Núria Vila. Large Galois images for Jacobian varieties of genus 3 curves. Acta Arithmetica, Tome 174 (2016) no. 4, pp. 339-366. doi: 10.4064/aa8250-4-2016
Cité par Sources :