The terms of the form $7kx^{2}$ in the generalized Lucas sequence with parameters $P$ and $Q$
Acta Arithmetica, Tome 173 (2016) no. 1, pp. 81-95
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $V_{n}(P,Q)$ denote the generalized Lucas sequence with parameters $P$ and $Q.$ For all odd relatively prime values of $P$ and $Q$ such that $P^{2}+4Q \gt 0,$ we determine all indices $n$ such that $V_{n}(P,Q)=7kx^{2}$ when $k\, |\, P.$ As an application, we determine all indices $n$ such that the equation $V_{n}=21x^{2}$ has solutions.
Keywords:
denote generalized lucas sequence parameters nbsp odd relatively prime values determine indices application determine indices equation has solutions
Affiliations des auteurs :
Olcay Karaatlı 1
@article{10_4064_aa8247_2_2016,
author = {Olcay Karaatl{\i}},
title = {The terms of the form $7kx^{2}$ in the generalized {Lucas} sequence with parameters $P$ and $Q$},
journal = {Acta Arithmetica},
pages = {81--95},
publisher = {mathdoc},
volume = {173},
number = {1},
year = {2016},
doi = {10.4064/aa8247-2-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8247-2-2016/}
}
TY - JOUR
AU - Olcay Karaatlı
TI - The terms of the form $7kx^{2}$ in the generalized Lucas sequence with parameters $P$ and $Q$
JO - Acta Arithmetica
PY - 2016
SP - 81
EP - 95
VL - 173
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8247-2-2016/
DO - 10.4064/aa8247-2-2016
LA - en
ID - 10_4064_aa8247_2_2016
ER -
%0 Journal Article
%A Olcay Karaatlı
%T The terms of the form $7kx^{2}$ in the generalized Lucas sequence with parameters $P$ and $Q$
%J Acta Arithmetica
%D 2016
%P 81-95
%V 173
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8247-2-2016/
%R 10.4064/aa8247-2-2016
%G en
%F 10_4064_aa8247_2_2016
Olcay Karaatlı. The terms of the form $7kx^{2}$ in the generalized Lucas sequence with parameters $P$ and $Q$. Acta Arithmetica, Tome 173 (2016) no. 1, pp. 81-95. doi: 10.4064/aa8247-2-2016
Cité par Sources :