On arbitrary products of eigenforms
Acta Arithmetica, Tome 173 (2016) no. 3, pp. 283-295
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We characterize all the cases in which products of arbitrary numbers of nearly holomorphic eigenforms and products of arbitrary numbers of quasimodular eigenforms for the full modular group $\operatorname{SL}_2(\mathbb{Z})$ are again eigenforms.
Keywords:
characterize cases which products arbitrary numbers nearly holomorphic eigenforms products arbitrary numbers quasimodular eigenforms full modular group operatorname mathbb again eigenforms
Affiliations des auteurs :
Arvind Kumar 1 ; Jaban Meher 2
@article{10_4064_aa8245_2_2016,
author = {Arvind Kumar and Jaban Meher},
title = {On arbitrary products of eigenforms},
journal = {Acta Arithmetica},
pages = {283--295},
publisher = {mathdoc},
volume = {173},
number = {3},
year = {2016},
doi = {10.4064/aa8245-2-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8245-2-2016/}
}
Arvind Kumar; Jaban Meher. On arbitrary products of eigenforms. Acta Arithmetica, Tome 173 (2016) no. 3, pp. 283-295. doi: 10.4064/aa8245-2-2016
Cité par Sources :