On weak Mellin transforms, second degree characters and the Riemann hypothesis
Acta Arithmetica, Tome 177 (2017) no. 3, pp. 219-275.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f$ be a function defined on $\mathbb{R}$ or $\mathbb{Q}_p$ and suppose that the integral defining the Mellin transform (or zeta integral) of $f$ does not converge. We can however say that $f$ has a “weak Mellin transform” $M_f(s)$ if ${\mathop{\rm Mell}(\phi \star f,s) = \mathop{\rm Mell} (\phi,s)M_f(s)}$ for all test functions $\phi$ in $C_c^\infty(\mathbb{R}^*)$ or $C_c^\infty(\mathbb{Q}_p^*)$. We show that if $f$ is of the form $f(x) = \psi\bigl(\frac a2x^2+bx\bigl)$, where $\psi$ is an additive character on $\mathbb{R}$ or $\mathbb{Q}_p$ and $a$ is invertible, then the weak Mellin transform of $f$ exists for $\Re(s) \gt 0$, satisfies a functional equation and vanishes only for $\Re(s) = 1/2$.
DOI : 10.4064/aa8240-7-2016
Keywords: function defined mathbb mathbb suppose integral defining mellin transform zeta integral does converge however say has weak mellin transform mathop mell phi star mathop mell phi s test functions phi infty mathbb * nbsp infty mathbb * form psi bigl frac bigl where psi additive character mathbb mathbb invertible weak mellin transform exists satisfies functional equation vanishes only

Bruno Sauvalle 1

1 MINES ParisTech, PSL – Research University 60 Bd Saint-Michel 75006 Paris, France
@article{10_4064_aa8240_7_2016,
     author = {Bruno Sauvalle},
     title = {On weak {Mellin} transforms, second degree characters and the {Riemann} hypothesis},
     journal = {Acta Arithmetica},
     pages = {219--275},
     publisher = {mathdoc},
     volume = {177},
     number = {3},
     year = {2017},
     doi = {10.4064/aa8240-7-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8240-7-2016/}
}
TY  - JOUR
AU  - Bruno Sauvalle
TI  - On weak Mellin transforms, second degree characters and the Riemann hypothesis
JO  - Acta Arithmetica
PY  - 2017
SP  - 219
EP  - 275
VL  - 177
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8240-7-2016/
DO  - 10.4064/aa8240-7-2016
LA  - en
ID  - 10_4064_aa8240_7_2016
ER  - 
%0 Journal Article
%A Bruno Sauvalle
%T On weak Mellin transforms, second degree characters and the Riemann hypothesis
%J Acta Arithmetica
%D 2017
%P 219-275
%V 177
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8240-7-2016/
%R 10.4064/aa8240-7-2016
%G en
%F 10_4064_aa8240_7_2016
Bruno Sauvalle. On weak Mellin transforms, second degree characters and the Riemann hypothesis. Acta Arithmetica, Tome 177 (2017) no. 3, pp. 219-275. doi : 10.4064/aa8240-7-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8240-7-2016/

Cité par Sources :