On weak Mellin transforms, second degree characters and the Riemann hypothesis
Acta Arithmetica, Tome 177 (2017) no. 3, pp. 219-275
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $f$ be a function defined on $\mathbb{R}$ or $\mathbb{Q}_p$ and suppose that the integral defining the Mellin transform (or zeta integral) of $f$ does not converge. We can however say that $f$ has a “weak Mellin transform” $M_f(s)$ if ${\mathop{\rm Mell}(\phi \star f,s) = \mathop{\rm Mell} (\phi,s)M_f(s)}$
for all test functions $\phi$ in $C_c^\infty(\mathbb{R}^*)$ or $C_c^\infty(\mathbb{Q}_p^*)$. We show that if $f$ is of the form $f(x) = \psi\bigl(\frac a2x^2+bx\bigl)$, where $\psi$ is an additive character on $\mathbb{R}$ or $\mathbb{Q}_p$ and $a$ is invertible, then the weak Mellin transform of $f$ exists for $\Re(s) \gt 0$, satisfies a functional equation and vanishes only for $\Re(s) = 1/2$.
Keywords:
function defined mathbb mathbb suppose integral defining mellin transform zeta integral does converge however say has weak mellin transform mathop mell phi star mathop mell phi s test functions phi infty mathbb * nbsp infty mathbb * form psi bigl frac bigl where psi additive character mathbb mathbb invertible weak mellin transform exists satisfies functional equation vanishes only
Affiliations des auteurs :
Bruno Sauvalle  1
@article{10_4064_aa8240_7_2016,
author = {Bruno Sauvalle},
title = {On weak {Mellin} transforms, second degree characters and the {Riemann} hypothesis},
journal = {Acta Arithmetica},
pages = {219--275},
year = {2017},
volume = {177},
number = {3},
doi = {10.4064/aa8240-7-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8240-7-2016/}
}
TY - JOUR AU - Bruno Sauvalle TI - On weak Mellin transforms, second degree characters and the Riemann hypothesis JO - Acta Arithmetica PY - 2017 SP - 219 EP - 275 VL - 177 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8240-7-2016/ DO - 10.4064/aa8240-7-2016 LA - en ID - 10_4064_aa8240_7_2016 ER -
Bruno Sauvalle. On weak Mellin transforms, second degree characters and the Riemann hypothesis. Acta Arithmetica, Tome 177 (2017) no. 3, pp. 219-275. doi: 10.4064/aa8240-7-2016
Cité par Sources :