Elementary methods for incidence problems in finite fields
Acta Arithmetica, Tome 177 (2017) no. 2, pp. 133-142.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We use elementary methods to prove an incidence theorem for points and spheres in $\mathbb F_q^n$. As an application, we show that any point set $P\subset \mathbb F_q^2$ with $|P|\geq 5q$ determines a positive proportion of all circles. The latter result is an analogue of Beck’s Theorem for circles which is optimal up to multiplicative constants.
DOI : 10.4064/aa8225-10-2016
Keywords: elementary methods prove incidence theorem points spheres mathbb application point set subset mathbb geq determines positive proportion circles latter result analogue beck theorem circles which optimal multiplicative constants

Javier Cilleruelo 1 ; Alex Iosevich 2 ; Ben Lund 3 ; Oliver Roche-Newton 4 ; Misha Rudnev 5

1 Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid, Spain
2 Department of Mathematics University of Rochester Rochester, NY 14627, U.S.A.
3 Department of Computer Science Rutgers, The State University of New Jersey Piscataway, NJ 08854, USA
4 Institute for Financial Mathematics and Applied Number Theory Johannes Kepler Universität 4040 Linz, Austria
5 School of Mathematics University of Bristol University Walk Bristol, UK, BS8 1TW
@article{10_4064_aa8225_10_2016,
     author = {Javier Cilleruelo and Alex Iosevich and Ben Lund and Oliver Roche-Newton and Misha Rudnev},
     title = {Elementary methods for incidence problems in finite fields},
     journal = {Acta Arithmetica},
     pages = {133--142},
     publisher = {mathdoc},
     volume = {177},
     number = {2},
     year = {2017},
     doi = {10.4064/aa8225-10-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8225-10-2016/}
}
TY  - JOUR
AU  - Javier Cilleruelo
AU  - Alex Iosevich
AU  - Ben Lund
AU  - Oliver Roche-Newton
AU  - Misha Rudnev
TI  - Elementary methods for incidence problems in finite fields
JO  - Acta Arithmetica
PY  - 2017
SP  - 133
EP  - 142
VL  - 177
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8225-10-2016/
DO  - 10.4064/aa8225-10-2016
LA  - en
ID  - 10_4064_aa8225_10_2016
ER  - 
%0 Journal Article
%A Javier Cilleruelo
%A Alex Iosevich
%A Ben Lund
%A Oliver Roche-Newton
%A Misha Rudnev
%T Elementary methods for incidence problems in finite fields
%J Acta Arithmetica
%D 2017
%P 133-142
%V 177
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8225-10-2016/
%R 10.4064/aa8225-10-2016
%G en
%F 10_4064_aa8225_10_2016
Javier Cilleruelo; Alex Iosevich; Ben Lund; Oliver Roche-Newton; Misha Rudnev. Elementary methods for incidence problems in finite fields. Acta Arithmetica, Tome 177 (2017) no. 2, pp. 133-142. doi : 10.4064/aa8225-10-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8225-10-2016/

Cité par Sources :