New examples of complete sets, with connections to a Diophantine theorem of Furstenberg
Acta Arithmetica, Tome 177 (2017) no. 2, pp. 101-131
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A set $A\subseteq\mathbb N$ is called complete if every sufficiently large integer can be written as a sum of distinct elements of $A$. We present a new method for proving the completeness of a set, improving results of Cassels (1960), Zannier (1992), Burr, Erdős, Graham, and Li (1996), and Hegyvári (2000). We also introduce the somewhat philosophically related notion of a dispersing set, and refine a theorem of Furstenberg (1967).
Keywords:
set subseteq mathbb called complete every sufficiently large integer written sum distinct elements nbsp present method proving completeness set improving results cassels zannier burr erd graham hegyv introduce somewhat philosophically related notion dispersing set refine theorem furstenberg
Affiliations des auteurs :
Vitaly Bergelson 1 ; David Simmons 2
@article{10_4064_aa8221_10_2016,
author = {Vitaly Bergelson and David Simmons},
title = {New examples of complete sets, with connections to a {Diophantine} theorem of {Furstenberg}},
journal = {Acta Arithmetica},
pages = {101--131},
publisher = {mathdoc},
volume = {177},
number = {2},
year = {2017},
doi = {10.4064/aa8221-10-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8221-10-2016/}
}
TY - JOUR AU - Vitaly Bergelson AU - David Simmons TI - New examples of complete sets, with connections to a Diophantine theorem of Furstenberg JO - Acta Arithmetica PY - 2017 SP - 101 EP - 131 VL - 177 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8221-10-2016/ DO - 10.4064/aa8221-10-2016 LA - en ID - 10_4064_aa8221_10_2016 ER -
%0 Journal Article %A Vitaly Bergelson %A David Simmons %T New examples of complete sets, with connections to a Diophantine theorem of Furstenberg %J Acta Arithmetica %D 2017 %P 101-131 %V 177 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8221-10-2016/ %R 10.4064/aa8221-10-2016 %G en %F 10_4064_aa8221_10_2016
Vitaly Bergelson; David Simmons. New examples of complete sets, with connections to a Diophantine theorem of Furstenberg. Acta Arithmetica, Tome 177 (2017) no. 2, pp. 101-131. doi: 10.4064/aa8221-10-2016
Cité par Sources :