New examples of complete sets, with connections to a Diophantine theorem of Furstenberg
Acta Arithmetica, Tome 177 (2017) no. 2, pp. 101-131.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A set $A\subseteq\mathbb N$ is called complete if every sufficiently large integer can be written as a sum of distinct elements of $A$. We present a new method for proving the completeness of a set, improving results of Cassels (1960), Zannier (1992), Burr, Erdős, Graham, and Li (1996), and Hegyvári (2000). We also introduce the somewhat philosophically related notion of a dispersing set, and refine a theorem of Furstenberg (1967).
DOI : 10.4064/aa8221-10-2016
Keywords: set subseteq mathbb called complete every sufficiently large integer written sum distinct elements nbsp present method proving completeness set improving results cassels zannier burr erd graham hegyv introduce somewhat philosophically related notion dispersing set refine theorem furstenberg

Vitaly Bergelson 1 ; David Simmons 2

1 Department of Mathematics Ohio State University 231 W. 18th Avenue Columbus, OH 43210-1174, U.S.A.
2 Department of Mathematics University of York Heslington, York YO10 5DD, UK
@article{10_4064_aa8221_10_2016,
     author = {Vitaly Bergelson and David Simmons},
     title = {New examples of complete sets, with connections to a {Diophantine} theorem of {Furstenberg}},
     journal = {Acta Arithmetica},
     pages = {101--131},
     publisher = {mathdoc},
     volume = {177},
     number = {2},
     year = {2017},
     doi = {10.4064/aa8221-10-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8221-10-2016/}
}
TY  - JOUR
AU  - Vitaly Bergelson
AU  - David Simmons
TI  - New examples of complete sets, with connections to a Diophantine theorem of Furstenberg
JO  - Acta Arithmetica
PY  - 2017
SP  - 101
EP  - 131
VL  - 177
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8221-10-2016/
DO  - 10.4064/aa8221-10-2016
LA  - en
ID  - 10_4064_aa8221_10_2016
ER  - 
%0 Journal Article
%A Vitaly Bergelson
%A David Simmons
%T New examples of complete sets, with connections to a Diophantine theorem of Furstenberg
%J Acta Arithmetica
%D 2017
%P 101-131
%V 177
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8221-10-2016/
%R 10.4064/aa8221-10-2016
%G en
%F 10_4064_aa8221_10_2016
Vitaly Bergelson; David Simmons. New examples of complete sets, with connections to a Diophantine theorem of Furstenberg. Acta Arithmetica, Tome 177 (2017) no. 2, pp. 101-131. doi : 10.4064/aa8221-10-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8221-10-2016/

Cité par Sources :