On Kurzweil’s 0-1 law in inhomogeneous Diophantine approximation
Acta Arithmetica, Tome 173 (2016) no. 1, pp. 41-57
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give a necessary and sufficient condition such that, for almost all $s\in{\mathbb R}$,
\[
\|n\theta-s\| \lt \psi(n)\ \quad\text{for infinitely many } n\in{\mathbb N},
\]
where $\theta$ is fixed and $\psi(n)$ is a positive, non-increasing sequence. This can be seen as a dual result to classical theorems of Khintchine and Szüsz which dealt with the situation where $s$ is fixed and $\theta$ is random. Moreover, our result contains several earlier ones as special cases: two old theorems of Kurzweil, a theorem of Tseng and a recent result of the second author. We also discuss a similar result (with the same consequences) in the field of formal Laurent series.
Keywords:
necessary sufficient condition almost mathbb theta s psi quad text infinitely many mathbb where theta fixed psi positive non increasing sequence seen dual result classical theorems khintchine which dealt situation where fixed theta random moreover result contains several earlier special cases old theorems kurzweil theorem tseng recent result second author discuss similar result consequences field formal laurent series
Affiliations des auteurs :
Michael Fuchs 1 ; Dong Han Kim 2
@article{10_4064_aa8219_1_2016,
author = {Michael Fuchs and Dong Han Kim},
title = {On {Kurzweil{\textquoteright}s} 0-1 law in inhomogeneous {Diophantine} approximation},
journal = {Acta Arithmetica},
pages = {41--57},
publisher = {mathdoc},
volume = {173},
number = {1},
year = {2016},
doi = {10.4064/aa8219-1-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8219-1-2016/}
}
TY - JOUR AU - Michael Fuchs AU - Dong Han Kim TI - On Kurzweil’s 0-1 law in inhomogeneous Diophantine approximation JO - Acta Arithmetica PY - 2016 SP - 41 EP - 57 VL - 173 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8219-1-2016/ DO - 10.4064/aa8219-1-2016 LA - en ID - 10_4064_aa8219_1_2016 ER -
Michael Fuchs; Dong Han Kim. On Kurzweil’s 0-1 law in inhomogeneous Diophantine approximation. Acta Arithmetica, Tome 173 (2016) no. 1, pp. 41-57. doi: 10.4064/aa8219-1-2016
Cité par Sources :