On Kurzweil’s 0-1 law in inhomogeneous Diophantine approximation
Acta Arithmetica, Tome 173 (2016) no. 1, pp. 41-57.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a necessary and sufficient condition such that, for almost all $s\in{\mathbb R}$, \[ \|n\theta-s\| \lt \psi(n)\ \quad\text{for infinitely many } n\in{\mathbb N}, \] where $\theta$ is fixed and $\psi(n)$ is a positive, non-increasing sequence. This can be seen as a dual result to classical theorems of Khintchine and Szüsz which dealt with the situation where $s$ is fixed and $\theta$ is random. Moreover, our result contains several earlier ones as special cases: two old theorems of Kurzweil, a theorem of Tseng and a recent result of the second author. We also discuss a similar result (with the same consequences) in the field of formal Laurent series.
DOI : 10.4064/aa8219-1-2016
Keywords: necessary sufficient condition almost mathbb theta s psi quad text infinitely many mathbb where theta fixed psi positive non increasing sequence seen dual result classical theorems khintchine which dealt situation where fixed theta random moreover result contains several earlier special cases old theorems kurzweil theorem tseng recent result second author discuss similar result consequences field formal laurent series

Michael Fuchs 1 ; Dong Han Kim 2

1 Department of Applied Mathematics National Chiao Tung University Hsinchu 300, Taiwan
2 Department of Mathematics Education Dongguk University – Seoul Seoul 100-715, Korea
@article{10_4064_aa8219_1_2016,
     author = {Michael Fuchs and Dong Han Kim},
     title = {On {Kurzweil{\textquoteright}s} 0-1 law in inhomogeneous {Diophantine} approximation},
     journal = {Acta Arithmetica},
     pages = {41--57},
     publisher = {mathdoc},
     volume = {173},
     number = {1},
     year = {2016},
     doi = {10.4064/aa8219-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8219-1-2016/}
}
TY  - JOUR
AU  - Michael Fuchs
AU  - Dong Han Kim
TI  - On Kurzweil’s 0-1 law in inhomogeneous Diophantine approximation
JO  - Acta Arithmetica
PY  - 2016
SP  - 41
EP  - 57
VL  - 173
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8219-1-2016/
DO  - 10.4064/aa8219-1-2016
LA  - en
ID  - 10_4064_aa8219_1_2016
ER  - 
%0 Journal Article
%A Michael Fuchs
%A Dong Han Kim
%T On Kurzweil’s 0-1 law in inhomogeneous Diophantine approximation
%J Acta Arithmetica
%D 2016
%P 41-57
%V 173
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8219-1-2016/
%R 10.4064/aa8219-1-2016
%G en
%F 10_4064_aa8219_1_2016
Michael Fuchs; Dong Han Kim. On Kurzweil’s 0-1 law in inhomogeneous Diophantine approximation. Acta Arithmetica, Tome 173 (2016) no. 1, pp. 41-57. doi : 10.4064/aa8219-1-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8219-1-2016/

Cité par Sources :