On the generalized Fermat equation over totally real fields
Acta Arithmetica, Tome 173 (2016) no. 3, pp. 225-237.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In a recent paper, Freitas and Siksek proved an asymptotic version of Fermat’s Last Theorem for many totally real fields. We prove an extension of their result to generalized Fermat equations of the form $A x^p+B y^p+ C z^p=0$, where $A$, $B$, $C$ are odd integers belonging to a totally real field.
DOI : 10.4064/aa8171-1-2016
Keywords: recent paper freitas siksek proved asymptotic version fermat theorem many totally real fields prove extension their result generalized fermat equations form b where odd integers belonging totally real field

Heline Deconinck 1

1 Mathematics Institute University of Warwick Coventry, CV4 7AL, United Kingdom
@article{10_4064_aa8171_1_2016,
     author = {Heline Deconinck},
     title = {On the generalized {Fermat} equation over totally real fields},
     journal = {Acta Arithmetica},
     pages = {225--237},
     publisher = {mathdoc},
     volume = {173},
     number = {3},
     year = {2016},
     doi = {10.4064/aa8171-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8171-1-2016/}
}
TY  - JOUR
AU  - Heline Deconinck
TI  - On the generalized Fermat equation over totally real fields
JO  - Acta Arithmetica
PY  - 2016
SP  - 225
EP  - 237
VL  - 173
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8171-1-2016/
DO  - 10.4064/aa8171-1-2016
LA  - en
ID  - 10_4064_aa8171_1_2016
ER  - 
%0 Journal Article
%A Heline Deconinck
%T On the generalized Fermat equation over totally real fields
%J Acta Arithmetica
%D 2016
%P 225-237
%V 173
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8171-1-2016/
%R 10.4064/aa8171-1-2016
%G en
%F 10_4064_aa8171_1_2016
Heline Deconinck. On the generalized Fermat equation over totally real fields. Acta Arithmetica, Tome 173 (2016) no. 3, pp. 225-237. doi : 10.4064/aa8171-1-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8171-1-2016/

Cité par Sources :