Obstruction sets and extensions of groups
Acta Arithmetica, Tome 173 (2016) no. 2, pp. 151-181.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a nice variety over a number field $k$. We characterise in pure “descent-type” terms some inequivalent obstruction sets refining the inclusion $X({\mathbb A}_k)^{\textrm{ét,Br}} \subset X({\mathbb A}_k)^{{\rm Br}_1}$. In the first part, we apply ideas from the proof of $X({\mathbb A}_k)^{\textrm{ét,Br}} = X({\mathbb A}_k)^{\mathcal{L}_k}$ by Skorobogatov and Demarche to new cases, by proving a comparison theorem for obstruction sets. In the second part, we show that if $\mathcal{A} \subset \mathcal{B} \subset \mathcal{L}_k$ are such that $\mathcal{B} \subset \textrm{Ext}(\mathcal{A}, \mathcal{U}_k)$, then $X({\mathbb A}_k)^{\mathcal{A}} = X({\mathbb A}_k)^{\mathcal{B}}$. This allows us to conclude, among other things, that $X({\mathbb A}_k)^{\textrm{ét,Br}} =X({\mathbb A}_k)^{\mathcal{R}_k}$ and $X({\mathbb A}_k)^ {\rm Sol,Br_1} = X({\mathbb A}_k)^{{\rm Sol}_k}$.
DOI : 10.4064/aa8154-12-2015
Keywords: nice variety number field characterise pure descent type terms inequivalent obstruction sets refining inclusion mathbb textrm subset mathbb first part apply ideas proof mathbb textrm mathbb mathcal skorobogatov demarche cases proving comparison theorem obstruction sets second part mathcal subset mathcal subset mathcal mathcal subset textrm ext mathcal mathcal mathbb mathcal mathbb mathcal allows conclude among other things mathbb textrm mathbb mathcal mathbb sol mathbb sol

Francesca Balestrieri 1

1 Mathematical Institute Oxford, OX2 6HD, United Kingdom
@article{10_4064_aa8154_12_2015,
     author = {Francesca Balestrieri},
     title = {Obstruction sets and extensions of groups},
     journal = {Acta Arithmetica},
     pages = {151--181},
     publisher = {mathdoc},
     volume = {173},
     number = {2},
     year = {2016},
     doi = {10.4064/aa8154-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8154-12-2015/}
}
TY  - JOUR
AU  - Francesca Balestrieri
TI  - Obstruction sets and extensions of groups
JO  - Acta Arithmetica
PY  - 2016
SP  - 151
EP  - 181
VL  - 173
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8154-12-2015/
DO  - 10.4064/aa8154-12-2015
LA  - en
ID  - 10_4064_aa8154_12_2015
ER  - 
%0 Journal Article
%A Francesca Balestrieri
%T Obstruction sets and extensions of groups
%J Acta Arithmetica
%D 2016
%P 151-181
%V 173
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8154-12-2015/
%R 10.4064/aa8154-12-2015
%G en
%F 10_4064_aa8154_12_2015
Francesca Balestrieri. Obstruction sets and extensions of groups. Acta Arithmetica, Tome 173 (2016) no. 2, pp. 151-181. doi : 10.4064/aa8154-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/aa8154-12-2015/

Cité par Sources :