Almost prime triples and Chen’s theorem
Acta Arithmetica, Tome 179 (2017) no. 3, pp. 233-250.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is proved that there exist infinitely many primes $p$ such that $p+2$ and $p+6$ has at most $2$ and at most $14$ prime factors respectively. This result constitutes a refinement upon that of Heath-Brown and Xiannan Li.
DOI : 10.4064/aa8150-1-2017
Keywords: proved there exist infinitely many primes has prime factors respectively result constitutes refinement heath brown xiannan

Yingchun Cai 1

1 Department of Mathematics Tongji University Shanghai 200092, P.R. China
@article{10_4064_aa8150_1_2017,
     author = {Yingchun Cai},
     title = {Almost prime triples and {Chen{\textquoteright}s} theorem},
     journal = {Acta Arithmetica},
     pages = {233--250},
     publisher = {mathdoc},
     volume = {179},
     number = {3},
     year = {2017},
     doi = {10.4064/aa8150-1-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8150-1-2017/}
}
TY  - JOUR
AU  - Yingchun Cai
TI  - Almost prime triples and Chen’s theorem
JO  - Acta Arithmetica
PY  - 2017
SP  - 233
EP  - 250
VL  - 179
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8150-1-2017/
DO  - 10.4064/aa8150-1-2017
LA  - en
ID  - 10_4064_aa8150_1_2017
ER  - 
%0 Journal Article
%A Yingchun Cai
%T Almost prime triples and Chen’s theorem
%J Acta Arithmetica
%D 2017
%P 233-250
%V 179
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8150-1-2017/
%R 10.4064/aa8150-1-2017
%G en
%F 10_4064_aa8150_1_2017
Yingchun Cai. Almost prime triples and Chen’s theorem. Acta Arithmetica, Tome 179 (2017) no. 3, pp. 233-250. doi : 10.4064/aa8150-1-2017. http://geodesic.mathdoc.fr/articles/10.4064/aa8150-1-2017/

Cité par Sources :