On the torsion of the Jacobians of the hyperelliptic curves $y^{2}=x^{n}+a$ and $y^{2}=x(x^{n}+a)$
Acta Arithmetica, Tome 174 (2016) no. 2, pp. 99-120.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Consider two families of hyperelliptic curves (over $\mathbb{Q}$), $C^{n,a}:y^{2}=x^{n}+a$ and $C_{n,a}:y^{2}=x(x^{n}+a)$, and their respective Jacobians $J^{n,a}$, $J_{n,a}$. We give a partial characterization of the torsion part of $J^{n,a}( \mathbb{Q}) $ and $J_{n,a}( \mathbb{Q}) $. More precisely, we show that the only prime factors of the orders of such groups are 2 and prime divisors of $n$ (we also give upper bounds for the exponents). Moreover, we give a complete description of the torsion part of $J_{8,a}( \mathbb{Q})$. Namely, we show that $J_{8,a}(\mathbb{Q})_{\rm tors} =J_{8,a}(\mathbb{Q})[2]$. In addition, we characterize the torsion parts of $J_{p,a}( \mathbb{Q}) $, where $p$ is an odd prime, and of $J^{n,a}( \mathbb{Q}) $, where $n=4,6,8$. The main ingredients in the proofs are explicit computations of zeta functions of the relevant curves, and applications of the Chebotarev Density Theorem.
DOI : 10.4064/aa8141-3-2016
Keywords: consider families hyperelliptic curves mathbb their respective jacobians partial characterization torsion part mathbb mathbb precisely only prime factors orders groups prime divisors upper bounds exponents moreover complete description torsion part mathbb namely mathbb tors mathbb addition characterize torsion parts mathbb where odd prime mathbb where main ingredients proofs explicit computations zeta functions relevant curves applications chebotarev density theorem

Tomasz Jędrzejak 1

1 Institute of Mathematics University of Szczecin Wielkopolska 15 70-451 Szczecin, Poland
@article{10_4064_aa8141_3_2016,
     author = {Tomasz J\k{e}drzejak},
     title = {On the torsion of the {Jacobians} of the hyperelliptic curves $y^{2}=x^{n}+a$ and $y^{2}=x(x^{n}+a)$},
     journal = {Acta Arithmetica},
     pages = {99--120},
     publisher = {mathdoc},
     volume = {174},
     number = {2},
     year = {2016},
     doi = {10.4064/aa8141-3-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8141-3-2016/}
}
TY  - JOUR
AU  - Tomasz Jędrzejak
TI  - On the torsion of the Jacobians of the hyperelliptic curves $y^{2}=x^{n}+a$ and $y^{2}=x(x^{n}+a)$
JO  - Acta Arithmetica
PY  - 2016
SP  - 99
EP  - 120
VL  - 174
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8141-3-2016/
DO  - 10.4064/aa8141-3-2016
LA  - en
ID  - 10_4064_aa8141_3_2016
ER  - 
%0 Journal Article
%A Tomasz Jędrzejak
%T On the torsion of the Jacobians of the hyperelliptic curves $y^{2}=x^{n}+a$ and $y^{2}=x(x^{n}+a)$
%J Acta Arithmetica
%D 2016
%P 99-120
%V 174
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8141-3-2016/
%R 10.4064/aa8141-3-2016
%G en
%F 10_4064_aa8141_3_2016
Tomasz Jędrzejak. On the torsion of the Jacobians of the hyperelliptic curves $y^{2}=x^{n}+a$ and $y^{2}=x(x^{n}+a)$. Acta Arithmetica, Tome 174 (2016) no. 2, pp. 99-120. doi : 10.4064/aa8141-3-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8141-3-2016/

Cité par Sources :