Exponential sums involving the Möbius function
Acta Arithmetica, Tome 175 (2016) no. 3, pp. 201-209
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mu (n)$ be the Möbius function, and $e(x)=e^{2\pi ix}$ with $x$ real. We estimate exponential sums involving the Möbius function $$ S_k(x,\alpha )= \sum _{n\leq x}\mu (n)e(n^k\alpha ) $$ under the weak Generalized Riemann Hypothesis when $k\geq 3$.
Keywords:
bius function real estimate exponential sums involving bius function alpha sum leq k alpha under weak generalized riemann hypothesis geq
Affiliations des auteurs :
Xiaoguang He 1 ; Bingrong Huang 1
@article{10_4064_aa8130_5_2016,
author = {Xiaoguang He and Bingrong Huang},
title = {Exponential sums involving the {M\"obius} function},
journal = {Acta Arithmetica},
pages = {201--209},
publisher = {mathdoc},
volume = {175},
number = {3},
year = {2016},
doi = {10.4064/aa8130-5-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8130-5-2016/}
}
TY - JOUR AU - Xiaoguang He AU - Bingrong Huang TI - Exponential sums involving the Möbius function JO - Acta Arithmetica PY - 2016 SP - 201 EP - 209 VL - 175 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8130-5-2016/ DO - 10.4064/aa8130-5-2016 LA - en ID - 10_4064_aa8130_5_2016 ER -
Xiaoguang He; Bingrong Huang. Exponential sums involving the Möbius function. Acta Arithmetica, Tome 175 (2016) no. 3, pp. 201-209. doi: 10.4064/aa8130-5-2016
Cité par Sources :