Higher Mahler measure of an $n$-variable family
Acta Arithmetica, Tome 174 (2016) no. 1, pp. 1-30
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove formulas for the $k$-higher Mahler measure of a family of rational functions with an arbitrary number of variables. Our formulas reveal relations with multiple polylogarithms evaluated at certain roots of unity.
Keywords:
prove formulas k higher mahler measure family rational functions arbitrary number variables formulas reveal relations multiple polylogarithms evaluated certain roots unity
Affiliations des auteurs :
Matilde N. Lalín 1 ; Jean-Sébastien Lechasseur 1
@article{10_4064_aa8111_3_2016,
author = {Matilde N. Lal{\'\i}n and Jean-S\'ebastien Lechasseur},
title = {Higher {Mahler} measure of an $n$-variable family},
journal = {Acta Arithmetica},
pages = {1--30},
publisher = {mathdoc},
volume = {174},
number = {1},
year = {2016},
doi = {10.4064/aa8111-3-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8111-3-2016/}
}
TY - JOUR AU - Matilde N. Lalín AU - Jean-Sébastien Lechasseur TI - Higher Mahler measure of an $n$-variable family JO - Acta Arithmetica PY - 2016 SP - 1 EP - 30 VL - 174 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8111-3-2016/ DO - 10.4064/aa8111-3-2016 LA - en ID - 10_4064_aa8111_3_2016 ER -
Matilde N. Lalín; Jean-Sébastien Lechasseur. Higher Mahler measure of an $n$-variable family. Acta Arithmetica, Tome 174 (2016) no. 1, pp. 1-30. doi: 10.4064/aa8111-3-2016
Cité par Sources :